期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Graphene-based materials for flexible energy storage devices 被引量:8
1
作者 Kena Chen Qingrong Wang +1 位作者 Zhiqiang Niu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期12-24,共13页
The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous... The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention. As the key component of both supercapacitors and batteries, electrode materials with excellent flexibility should be considered to match with highly flexible energy storage devices. Owing to large surface area, good thermal and chemical stability, high conductivity and mechanical flexibility,graphene-based materials have been widely employed to serve as promising electrodes of flexible energy storage devices. Considerable efforts have been devoted to the fabrication of flexible graphene-based electrodes through a variety of strategies. Moreover, different configurations of energy storage devices based on these active materials are designed. This review highlights flexible graphene-based two-dimensional film and one-dimensional fiber supercapacitors and various batteries including lithium-ion, lithium–sulfur and other batteries. The challenges and promising perspectives of the graphene-based materials for flexible energy storage devices are also discussed. 展开更多
关键词 graphene flexible energy storage device
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部