Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scannin...Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The electrochemical performances of the composites were analyzed using cyclic voltammetry, electrochemical impedance spectrometry (EIS), and chronopotentiometry. The results showed that GN/MnO2 (10 wt% graphene) displayed a specific capacitance of 244 F/g at a current density of 100 mA/g. An excellent cyclic stability was obtained with a capacity retention of approximately 94.3% after 500 cycles in a 1 mol/L Li2SO4 solution. The improved electrochemical performance is attributed to the hierarchy structure of the manganese dioxide, which can enlarge the interface between the active materials and the electrolyte. The prepa- ration route provides a new approach for hierarchy structure graphene composites; this work could be readily extended to the preparation of other graphene-based composites with different structures for use in energy storage devices.展开更多
基金supported by the Program for New Century Excellent Talents in University(NCET-09-0215)by a grant from the National Research and Development Program of China (863 Program,2012AA110302)by the State Key Laboratory of Multiphase Complex Systems(MPCS-2011-D-08)
文摘Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The electrochemical performances of the composites were analyzed using cyclic voltammetry, electrochemical impedance spectrometry (EIS), and chronopotentiometry. The results showed that GN/MnO2 (10 wt% graphene) displayed a specific capacitance of 244 F/g at a current density of 100 mA/g. An excellent cyclic stability was obtained with a capacity retention of approximately 94.3% after 500 cycles in a 1 mol/L Li2SO4 solution. The improved electrochemical performance is attributed to the hierarchy structure of the manganese dioxide, which can enlarge the interface between the active materials and the electrolyte. The prepa- ration route provides a new approach for hierarchy structure graphene composites; this work could be readily extended to the preparation of other graphene-based composites with different structures for use in energy storage devices.