Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th...The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.展开更多
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria...Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.展开更多
A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonate...A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonated polysulfone/graphene(SPSG)was synthesized by phase conversion process,which was alternately immersed in 0.1 mol·L^(-1)CuSO_(4)/K_(4)[Fe(CN)_(6)]by in-situ adsorption coupled co-precipitation method.Various data such as nuclear magnetic resonance spectrometer,Fourier transform infrared spectroscope,X-ray photoelectron spectroscope,X-ray diffraction,scanning electron microscope,and energy dispersive spectroscopy all verified that abundant KCuFC were uniformly located on the film.The resulting KCuFC/SPSG was used in film separation system.As the solution was fed into the system,the Rb^(+)could be selectively adsorption by KCuFC/SPSG.After the saturation adsorption,0.5 mol·L^(-1)NH_(4)Cl/HCl was fed into the film cell,Rb^(+)could be quickly desorbed by ion-exchange between Rb^(+)and NH_(4)^(+)in the lattice of KCuFC.The purpose of separating and recovering Rb^(+)from the brine can be achieved after the repeated operation.The effects of pH,adsorption time,and interferential ions on the adsorption capacity of Rb^(+)were investigated by batch experiments.The adsorption behavior fits the pseudo-second order kinetic process,while KCuFC has a higher adsorption capacity(Langmuir maximum sorption 165.4 mg·g^(-1)).In addition,KCuFC/SPSG shows excellent selectivity for Rb^(+)even in complex brine systems.KCuFC/SPSG could maintain 93.5%extraction efficiency after five adsorption/desorption cycles.展开更多
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef...Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids.展开更多
Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is mad...Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.展开更多
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(...For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.展开更多
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti...A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.展开更多
Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity ...Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str...Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.展开更多
We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.Ho...We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic.展开更多
Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of ch...Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition.展开更多
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr...Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.展开更多
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
This paper investigates the effects of pH on stability and thermal properties of copper oxide(CuO),graphene oxide(GO),and their hybrid nanofluid(HNF)at different mixing ratios.Initially,sol-gel and Hummer’s method wa...This paper investigates the effects of pH on stability and thermal properties of copper oxide(CuO),graphene oxide(GO),and their hybrid nanofluid(HNF)at different mixing ratios.Initially,sol-gel and Hummer’s method was employed for the synthesis of CuO and GO nanoparticles(NPs),and they are characterized with various techniques.The effects of two different surfactants were analyzed on nanofluid’s(NF’s)stability at different pH values.The properties like thermal conductivity(TC)and viscosity(VST)of NFs were measured at different volume concentration(0.1 vol%to 1.0 vol%)and temperature range of 30-60℃,respectively.The TC and VST of GO/CuO(50:50)HNF are higher than that of GO/CuO(20:80).The figure of merit(FOM)is determined for the studied HNFs.The correlations were presented to calculate the TC as well as VST of HNFs.Two modern novel machine learning-based ensemble approaches were employed for predictive model development for TC and VST of considered HNFs.The comparison of prognostic models with Taylor’s diagram revealed that Bayesian optimized support vector machine(BoASVM)was superior to Bayesian optimized boosted regression trees(BoA-BRT)for both TC and VST models.展开更多
Surface-enhanced Raman scattering(SERS)substrates based on chemical mechanism(CM)have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability,uniform molecu...Surface-enhanced Raman scattering(SERS)substrates based on chemical mechanism(CM)have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability,uniform molecular adsorption and controllable molecular orientation.However,it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate.Herein,we demonstrate a graphene oxide(GO)energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity.The Fermi level(Ef)of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate.Experimentally,kelvin probe force microscopy(KPFM)is employed to quantitatively analyze the Ef of GO.Theoretically,the density functional theory calculations are also performed to verify the proposed modulation mechanism.Consequently,the SERS response of probe molecules with different band structures(R6G,CV,MB,PNTP)can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate.This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.展开更多
Practical applications of diverse flexible wearable electronics require electrochemical energy storage(EES)devices with multiple configurations.Moreover,to fabricate flexible EES devices with high energy density and s...Practical applications of diverse flexible wearable electronics require electrochemical energy storage(EES)devices with multiple configurations.Moreover,to fabricate flexible EES devices with high energy density and stability,organic integration from electrode design to device assembly is required.To address these challenges,a free-standing reduced graphene oxide(rGO)/carbon film with a unique sandwich structure has been designed via the assistance of vacuum-assistant filtration for lithium-ion capacitors(LICs).The graphene acts as not only a binder to construct a three-dimensional conductive network but also an active material to provide additional capacitive lithium storage sites,thus enabling fast ion/electron transport and improving the capacity.The designed rGO/hard carbon(rGO/HC)and rGO/activated carbon(rGO/AC)free-standing films exhibit enhanced specific capacities(513.7 mA h g^(-1)for rGO/HC and 102.8 mA h g^(-1)for rGO/AC)and excellent stability.Moreover,the integrated flexible quasi-solid-state rGO/AC//rGO/HC LIC devices possess a maximum energy density of 138.3 Wh kg^(-1),a high power density of 11 kW kg^(-1),and improved cycling performance(84.4%capacitance maintained after 10,000 cycles),superior to the AC//HC LIC(43.5%retention).Such a strategy enlightens the development of portable flexible LICs.展开更多
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a...The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.展开更多
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金supported by the National Natural Science Foundation of China(22178293)the Natural Science Foundation of Fujian Province of China(2022J01022)。
文摘The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.
基金The authors wish to acknowledge Engineering and Physical Sciences Research Council(EPSRC)UK for the Global Challenges Research Fund(No.EP/R015139/1)Rosetrees Trust UK&Stoneygate Trust UK for the Enterprise Fellowship(Ref:M874).
文摘Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
基金supported by the Ministry of Science and Technology of China(Science and Technology to Boost Economy 2020 Key Project,SQ2020YFF0412719 and SQ2020YFF0404901)The Key Research and Development and Transformation Program Funding in Qinghai Province(2021-GX-105)Major projects of Anhui Province and Anhui Province Key Research and Development Plan(202104e11020005)。
文摘A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonated polysulfone/graphene(SPSG)was synthesized by phase conversion process,which was alternately immersed in 0.1 mol·L^(-1)CuSO_(4)/K_(4)[Fe(CN)_(6)]by in-situ adsorption coupled co-precipitation method.Various data such as nuclear magnetic resonance spectrometer,Fourier transform infrared spectroscope,X-ray photoelectron spectroscope,X-ray diffraction,scanning electron microscope,and energy dispersive spectroscopy all verified that abundant KCuFC were uniformly located on the film.The resulting KCuFC/SPSG was used in film separation system.As the solution was fed into the system,the Rb^(+)could be selectively adsorption by KCuFC/SPSG.After the saturation adsorption,0.5 mol·L^(-1)NH_(4)Cl/HCl was fed into the film cell,Rb^(+)could be quickly desorbed by ion-exchange between Rb^(+)and NH_(4)^(+)in the lattice of KCuFC.The purpose of separating and recovering Rb^(+)from the brine can be achieved after the repeated operation.The effects of pH,adsorption time,and interferential ions on the adsorption capacity of Rb^(+)were investigated by batch experiments.The adsorption behavior fits the pseudo-second order kinetic process,while KCuFC has a higher adsorption capacity(Langmuir maximum sorption 165.4 mg·g^(-1)).In addition,KCuFC/SPSG shows excellent selectivity for Rb^(+)even in complex brine systems.KCuFC/SPSG could maintain 93.5%extraction efficiency after five adsorption/desorption cycles.
基金funded by the Ministry of Higher Education,Malaysia,through the Research Fund of Fundamental Research Grant Scheme (FRGS/1/2020/STG06/UM/02/1:FP009-2020).
文摘Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids.
文摘Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups.
基金financially supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB530007,22KJA530001)National Natural Science Foundation of China(22208151)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220002)the State Key Laboratory of MaterialsOriented Chemical Engineering(SKL-MCE-22B07).
文摘For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.
基金Funded by the National Key Research and Development(R&D) Program of China(No.2018YFB1105702)。
文摘A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.
基金supported by the Universiti Brunei Darussalam Research Funding(Grant No.UBD/OAVCRI/CRGWG(022)/171001).
文摘Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金This work were supported by Natural Science Foundation of Zhejiang Province(LQ23E080003)a Doctoral program of Zhejiang University of science and technology(F701104L08)The Special Fund Project of Zhejiang University of Science and Technology's Basic Scientific Research Business Expenses in 2023(2023QN016).
文摘Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.
基金supported by the National Natural Science Foundation of China, No. 31671248the Natural Science Foundation of Beijing, No. 7222198 (both to NH)
文摘We previously combined reduced graphene oxide(rGO)with gelatin-methacryloyl(GelMA)and polycaprolactone(PCL)to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved.However,the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting.Extracellular vesicles derived from bone marrow mesenchymal stem cells(BMSCs)can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site.In this study,12 weeks after surgery,sciatic nerve function was measured by electrophysiology and sciatic nerve function index,and myelin sheath and axon regeneration were observed by electron microscopy,immunohistochemistry,and immunofluorescence.The regeneration of microvessel was observed by immunofluorescence.Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function.These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery,and provide a new direction for the curation of peripheral nerve defect in the clinic.
基金supported by the National Natural Science Foundation of China, No. 81871493 (to YC)the Medical Science Advancement Program (Clinical Medicine) of Wuhan University, No. TFLC2018003 (to YC)
文摘Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects.However,a conduit exhibiting good biocompatibility remains to be developed.In this work,a series of chitosan/graphene oxide(GO)films with concentrations of GO varying from 0-1 wt%(collectively referred to as CHGF-n)were prepared by an electrodeposition technique.The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated.The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20(a key myelination factor),Zeb2(essential for Schwann cell differentiation,myelination,and nerve repair),and transforming growth factorβ(a cytokine with regenerative functions).In addition,a nerve guidance conduit with a GO content of 0.25%(CHGFC-0.25)was implanted to repair a 10-mm sciatic nerve defect in rats.The results indicated improvements in sciatic functional index,electrophysiology,and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group,and similar outcomes to the autograft group.In conclusion,we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition.
基金supported by the China Postdoctoral Science Foundation(No.2021MD703944)the Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414211808)+1 种基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)the National Natural Science Foundation of China(No.21776053)。
文摘Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
文摘This paper investigates the effects of pH on stability and thermal properties of copper oxide(CuO),graphene oxide(GO),and their hybrid nanofluid(HNF)at different mixing ratios.Initially,sol-gel and Hummer’s method was employed for the synthesis of CuO and GO nanoparticles(NPs),and they are characterized with various techniques.The effects of two different surfactants were analyzed on nanofluid’s(NF’s)stability at different pH values.The properties like thermal conductivity(TC)and viscosity(VST)of NFs were measured at different volume concentration(0.1 vol%to 1.0 vol%)and temperature range of 30-60℃,respectively.The TC and VST of GO/CuO(50:50)HNF are higher than that of GO/CuO(20:80).The figure of merit(FOM)is determined for the studied HNFs.The correlations were presented to calculate the TC as well as VST of HNFs.Two modern novel machine learning-based ensemble approaches were employed for predictive model development for TC and VST of considered HNFs.The comparison of prognostic models with Taylor’s diagram revealed that Bayesian optimized support vector machine(BoASVM)was superior to Bayesian optimized boosted regression trees(BoA-BRT)for both TC and VST models.
基金financial supports from the National Natural Science Foundation of China (11974222,12004226,12174229,11904214)Natural Science Foundation of Shandong Province (ZR2022YQ02,ZR2020QA075)+2 种基金Qingchuang Science and Technology Plan of Shandong Province (2021KJ006,2019KJJ014,2019KJJ017)Taishan Scholars Program of Shandong Province (tsqn202306152)China Postdoctoral Science Foundation(2019M662423),Shandong Post-Doctoral Innovation Project (202002021).
文摘Surface-enhanced Raman scattering(SERS)substrates based on chemical mechanism(CM)have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability,uniform molecular adsorption and controllable molecular orientation.However,it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate.Herein,we demonstrate a graphene oxide(GO)energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity.The Fermi level(Ef)of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate.Experimentally,kelvin probe force microscopy(KPFM)is employed to quantitatively analyze the Ef of GO.Theoretically,the density functional theory calculations are also performed to verify the proposed modulation mechanism.Consequently,the SERS response of probe molecules with different band structures(R6G,CV,MB,PNTP)can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate.This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
基金financially supported by the National Natural Science Foundation of China(52077207 and 51907193)the Key Research Program of Frontier Sciences,CAS(ZDBS-LY-JSC047)the Youth Innovation Promotion Association CAS(2020145)。
文摘Practical applications of diverse flexible wearable electronics require electrochemical energy storage(EES)devices with multiple configurations.Moreover,to fabricate flexible EES devices with high energy density and stability,organic integration from electrode design to device assembly is required.To address these challenges,a free-standing reduced graphene oxide(rGO)/carbon film with a unique sandwich structure has been designed via the assistance of vacuum-assistant filtration for lithium-ion capacitors(LICs).The graphene acts as not only a binder to construct a three-dimensional conductive network but also an active material to provide additional capacitive lithium storage sites,thus enabling fast ion/electron transport and improving the capacity.The designed rGO/hard carbon(rGO/HC)and rGO/activated carbon(rGO/AC)free-standing films exhibit enhanced specific capacities(513.7 mA h g^(-1)for rGO/HC and 102.8 mA h g^(-1)for rGO/AC)and excellent stability.Moreover,the integrated flexible quasi-solid-state rGO/AC//rGO/HC LIC devices possess a maximum energy density of 138.3 Wh kg^(-1),a high power density of 11 kW kg^(-1),and improved cycling performance(84.4%capacitance maintained after 10,000 cycles),superior to the AC//HC LIC(43.5%retention).Such a strategy enlightens the development of portable flexible LICs.
基金funded by the Zhengzhou Materials Genome Institute,the National Talents Program of China,and Key Innovation Projects of the Zhengzhou Municipal City of China.
文摘The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.