期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
1
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Investigation on the Novel High-performance Copper/Graphene Composite Conductor for High Power Density Motor
2
作者 Jiaxiao Wang Tingting Zuo +10 位作者 Jiangli Xue Yadong Ru Yue Wu Zhuang Xu Yongsheng Liu Zhaoshun Gao Puqi Ning Tao Fan Xuhui Wen Li Han Liye Xiao 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期80-85,共6页
High-performance Cu/Graphene composite wire synergistically strengthened by nano Cr_(3)C_(2) phase was directly synthesized via hot press sintering followed by severe cold plastic deformation, using liquid paraffin an... High-performance Cu/Graphene composite wire synergistically strengthened by nano Cr_(3)C_(2) phase was directly synthesized via hot press sintering followed by severe cold plastic deformation, using liquid paraffin and CuCr alloy powder as the raw materials. Since graphene is in situ formed under the catalysis of copper powder during the sintering process, the problem that graphene is easy to agglomerate and difficult to disperse uniformly in the copper matrix has been solved. The nano Cr_(3)C_(2)-particles nailed at the interface favor to improve the interface bonding. The Cu/Graphene composite possesses high electrical conductivity, hardness, and plasticity. The composite wire exhibits high electrical conductivity of 96.93% IACS, great tensile strength of 488MPa, and excellent resistance to softening. Even after annealing at 400℃ for 1 h, the tensile strength can still reach 268 MPa with a conductivity of about 99.14% IACS.The wire's temperature coefficient of resistance(TCR) is largely reduced to 0.0035/℃ due to the complex structure,which leads the wire to present low resistivity at higher temperatures. Such Cu/Graphene composite wire with excellent comprehensive performance has a good application prospect in high-power density motors. 展开更多
关键词 Cu/graphene composite Mechanical properties Electrical property Microstructure Temperature coefficient of resistance
下载PDF
A Facile One-Step Synthesis of TiOe/Graphene Composites for Photodegradation of Methyl Orange 被引量:22
3
作者 Haijiao Zhang Panpan Xu +4 位作者 Guidong Du Zhiwen Chen Kokyo Oh Dengyu Pan Zheng Jiao 《Nano Research》 SCIE EI CAS CSCD 2011年第3期274-283,共10页
TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The prod... TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment. 展开更多
关键词 TiO2/graphene composites electron beam (EB) irradiation photocatalytic degradation methyl orange
原文传递
Direct synthesis of highly conductive poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems 被引量:23
4
作者 Dohyuk Yoo Jeonghun Kim Jung Hyun Kim 《Nano Research》 SCIE EI CAS CSCD 2014年第5期717-730,共14页
We report for the first time highly conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites fabricated by in situ polymerization and their applications in a thermo... We report for the first time highly conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites fabricated by in situ polymerization and their applications in a thermoelectric device and a platinum (Pt)-free dye-sensitized solar cell (DSSC) as energy harvesting systems. Graphene was dispersed in a solution of poly(4-styrenesulfonate) (PSS) and polymerization was directly carried out by addition of 3,4-ethylenedioxythiophene (EDOT) monomer to the dispersion. The content of the graphene was varied and optimized to give the highest electrical conductivity. The composite solution was ready to use without any reduction process because reduced graphene oxide was used. The fabricated film had a conductivity of 637 S.cm-1, corresponding to an enhancement of 41%, after the introduction of 3 wt.% graphene without any further complicated reduction processes of graphene being required. The highly conductive composite films were employed in an organic thermoelectric device, and the device showed a power factor of 45.7 μW·m^-1K^-2 which is 93% higher than a device based on pristine PEDOT:PSS. In addition, the highly conductive composite films were used in Pt-free DSSCs, showing an energy conversion efficiency of 5.4%, which is 21% higher than that of a DSSC based on PEDOT:PSS. 展开更多
关键词 direct synthesis conductive polymer graphene composite thermoelectric material dye-sensitized solar cell
原文传递
Mechanical and tribological behaviors of graphene/Inconel 718 composites 被引量:7
5
作者 Wei-han XIAO Shi-qiang LU +1 位作者 Ya-chao WANG Jing SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期1958-1969,共12页
Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.Th... Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.The composite microstructures were characterized by XRD,SEM and Raman spectroscopy.The results show that selective laser melting is a viable method to fabricate Inconel 718 matrix composite and the addition of graphene nanoplatelets leads to a significant strengthening of Inconel 718 alloy,as well as the improvement of tribological performance.The yield strength and ultimate tensile strength of 1.0%graphene/Inconel 718 composites(mass fraction)are 42%and 53%higher than those of pure material,and the friction coefficient and wear rate are 22.4%and 66.8%lower than those of pure material.The decrease of fraction coefficient and wear rate is attributed to the improved hardness of composites and the formation of graphene nanoplatelet protective layer on the worn surfaces. 展开更多
关键词 graphene graphene/Inconel 718 composite mechanical properties friction and wear properties MICROSTRUCTURE selective laser melting
下载PDF
Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion 被引量:3
6
作者 Yong Mei Pu-zhen Shao +8 位作者 Ming Sun Guo-qin Chen Murid Hussain Feng-lei Huang Qiang Zhang Xiao-sa Gao Yin-yin Pei Su-juan Zhong Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期888-899,共12页
Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graph... Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graphite sheets,thereby affecting the performance of the composites.Decreasing the agglomeration of graphene and dispersing it uniformly in the Al matrix is a key challenge.In the preparation process,predispersion treatment and deformation treatment can play important roles in graphene dispersion.Researchers have conducted a series of research and literature reviews of the graphene predispersion and consolidation of composites.However,they paid less attention to post-deformation processing.This review summarizes different deformation treatments involved in the preparation process of Gr/Al composites and the evolution of the microstructure during the process.Research on deformation parameters is expected to further improve the properties of Gr/Al composites and would provide a deep understanding of the strengthening effect of graphene. 展开更多
关键词 graphene/aluminum composites deformation treatment DISPERSION MICROSTRUCTURE
下载PDF
Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering 被引量:14
7
作者 Wen-ming Tian Song-mei Li +3 位作者 Bo Wang Xin Chen Jian-hua Liu Mei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期723-729,共7页
Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testi... Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide(Al_4C_3) is not formed during SPS processing. Further addition of graphene(above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration. 展开更多
关键词 metal matrix composites spark plasma sintering aluminum graphene mechanical properties
下载PDF
Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials
8
作者 赵文 何大伟 +2 位作者 王永生 杜翔 忻昊 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期366-371,共6页
To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel... To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F.g-1 at a current density of 1 A.g-1, nearly twice as large as that of the pure 3DGN (162.8 F.g-1). The capacitance of the composite is 307.9 F.g-1 at 30 A.g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors. 展开更多
关键词 graphene/polyaniline composites electrochemical property three-dimensional graphene
下载PDF
Nickel Sulfide/Graphene/Carbon Nanotube Composites as Electrode Material for the Supercapacitor Application in the Sea Flashing Signal System
9
作者 Hailong Chen Ji Li +4 位作者 Conglai Long Tong Wei Guoqing Ning Jun Yan Zhuangjun Fan 《Journal of Marine Science and Application》 2014年第4期462-466,共5页
This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductiv... This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system. 展开更多
关键词 flashing signal system electrochemical performances NiS/graphene/carbon nanotube composites SUPERCAPACITOR
下载PDF
Torsional postbuckling characteristics of functionally graded graphene enhanced laminated truncated conical shell with temperature dependent material properties
10
作者 Hamad M.Hasan Saad S.Alkhfaji Sattar A.Mutlag 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期272-279,共8页
Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented ... Buckling and postbuckling characteristics of laminated graphene-enhanced composite(GEC)truncated conical shells exposed to torsion under temperature conditions using finite element method(FEM)simulation are presented in this study.In the thickness direction,the GEC layers of the conical shell are ordered in a piece-wise arrangement of functionally graded(FG)distribution,with each layer containing a variable volume fraction for graphene reinforcement.To calculate the properties of temperaturedependent material of GEC layers,the extended Halpin-Tsai micromechanical framework is used.The FEM model is verified via comparing the current results obtained with the theoretical estimates for homogeneous,laminated cylindrical,and conical shells,the FEM model is validated.The computational results show that a piece-wise FG graphene volume fraction distribution can improve the torque of critical buckling and torsional postbuckling strength.Also,the geometric parameters have a critical impact on the stability of the conical shell.However,a temperature rise can reduce the crucial torsional buckling torque as well as the GEC laminated truncated conical shell’s postbuckling strength. 展开更多
关键词 Torsional postbuckling graphene enhanced composite Functionally graded graphene Finite element method Conical shell
下载PDF
A graphene-enhanced high-barrier and fast-curing film for deep in situ condition preserved coring in coal seams
11
作者 Dongsheng Yang Zhiyu Zhao +4 位作者 Yifan Wu Liangyu Zhu Jingli Lu Tao Liu Heping Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1365-1376,共12页
Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to ... Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to maintain the original material,humidity and luminous flux information inside the core.Therefore,this study proposes a research and development strategy for a high-toughness and highbarrier sealing film based on the molecular structure design and filler synergistic enhancement via a deep solid-state sealing film using in situ substance preservation(ISP),in situ moisture preservation(IMP)and in situ light preservation(ILP)coring principles.A graphene/epoxy composite sealing film with a high barrier,high strength and high toughness was developed.The oxygen permeability of the film was 0.23 cm^(3)/(m^(2)·d),the water vapor permeability was 1.26 g/(m^(2)·d),and the light transmittance was 0.The tensile strength reached 15.4 MPa,and the toughness was 5242.9 kJ/m^(3).The results from the film substance and moisture preservation performance verification experiments showed that the sealing film had an excellent sealing effect on small molecules,such as water,alkanes and even ions,which further verified that the sealing film greatly contributed to the maintenance and preservation of deep in-situ resource reserves and abundance. 展开更多
关键词 ISP-IMP-ILP-coring graphene/epoxy resin composites Sealing film
下载PDF
Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine
12
作者 Meichun Ding Demin Zhao +6 位作者 Panpan Feng Baolei Wang Zhenying Duan Rui Wei Yuxi Zhao Chen-Yang Liu Chenwei Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期52-65,共14页
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report... Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1)6 in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal. 展开更多
关键词 graphene aerogels graphene composites solar desalination solar-driven interfacial evaporation
下载PDF
Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory 被引量:7
13
作者 Shaowu YANG Yuxin HAO +2 位作者 Wei ZHANG Li YANG Lingtao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期981-998,共18页
In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vi... In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vibration analyses of the FG-GPLRC truncated conical shell are presented.Considering the graphene platelets(GPLs)of the FG-GPLRC truncated conical shell with three different distribution patterns,the modified Halpin-Tsai model is used to calculate the effective Young’s modulus.Hamilton’s principle,the FSDT,and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell.The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell.Then,the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method.The effects of the weight fraction and distribution pattern of the GPLs,the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed.This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell. 展开更多
关键词 nonlinear free vibration harmonic balance method functionally graded graphene platelet-reinforced composite(FG-GPLRC) truncated conical shell chaos
下载PDF
3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries 被引量:5
14
作者 Ju Fu Wenbin Kang +4 位作者 Xiaodong Guo Hao Wen Tianbiao Zeng Ruoxin Yuan Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期172-179,I0006,共9页
With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wi... With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs. 展开更多
关键词 NiO/graphene composite paper electrode 3D hierarchical porous structure Micro-sized NiO flowers Long-life high rate cycling Lithium ion battery
下载PDF
Two-Step Synthesis of Sulfur/Graphene Composite Cathode for Rechargeable Lithium Sulfur Batteries 被引量:2
15
作者 李景印 LI Na +1 位作者 LI Changjia GUO Yufeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期10-15,共6页
Sulfur/graphene composites with different sulfur contents were prepared by two-step synthesis, where graphene was regarded as a carrier of sulfur active substance. The surface structure and crystal form of the composi... Sulfur/graphene composites with different sulfur contents were prepared by two-step synthesis, where graphene was regarded as a carrier of sulfur active substance. The surface structure and crystal form of the composites obtained were characterized and compared by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that sulfur was partially coated by graphene. The graphene folds provided more nano-pores and electron transport channels for sulfur. From TGA results, the sulfur contents of the sulfur/graphene compositcs measured were about 42.32 wt%, 54.94 wt%, and 65.23 wt%. Electrochemical tests demonstrated that sulfur/graphene composite (x=54.94 wt%) cathode exhibited better capacity retention (40.13%) compared with the pure cathode (20.46%), where an initial discharge capacity was up to 1 500 mAh.g-t and it remained about 600 mAh·g-1 after 30 cycles. Furthermore, the electrochemical reaction mechanism and the state of reaction interface for Li/S battery were analyzed by cyclic voltammogram and AC-impedance spectra. The results indicated that the sulfur/graphene composite with a sulfur content of 54.94 wt%, based on a two-step synthesis, contributed to improving electrochemical properties of lithium/sulfur battery 展开更多
关键词 lithium/sulfur battery sulfur/graphene composite two-step synthesis electrochemical properties
下载PDF
Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate 被引量:1
16
作者 Shuai WANG Jiajia MAO +1 位作者 Wei ZHANG Haoming LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期341-354,共14页
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in... This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment. 展开更多
关键词 graphene reinforced composite functionally graded(FG)plate thermal buckling thermal postbuckling nonlocal theory small-scale effect
下载PDF
Protection and Functionalizing of Stainless Steel Surface by Graphene Oxide-Polypyrrole Composite Coating 被引量:1
17
作者 Jayanta Mondal Margus Marandi +3 位作者 Jekaterina Kozlova Maido Merisalu Ahti Niilisk Vaino Sammelselg 《Journal of Chemistry and Chemical Engineering》 2014年第8期786-793,共8页
The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the life... The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the lifetime of metallic substrates by inhibiting the corrosion process. Present work is an effort to develop a corrosion inhibiting composite coating of graphene oxide and polypyrrole for AISI (American Iron and Steel Institute) type 304 stainless steel substrates. The electrochemical galvanostatic deposition process was applied for coating development. The coating morphology and ability to cover the substrate surface was analyzed with a high-resolution scanning electron microscope. The coating's structural and electronic properties were analyzed with Raman spectroscopy. The investigation of corrosion inhibition involved open circuit potential, Tafel, and voltammetry analysis. The standard salt test ASTM (American Society for Testing and Materials) G48A for stainless steel substrate has also been studied. Significant enhancement of corrosion potential as well as pitting potential for the composite coated substrates has been noted. Furthermore, corrosion and breakdown potential increased upon changing the material from graphene oxide to its composite coating. During the salt test analysis, the durability of the composite coating was noted up to 72 h, which is the standard time scale. Based on experimental analysis, this composite material can be used as an effective carbon based on functionalized corrosion inhibitor for stainless steel substrates to increase their lifetime. 展开更多
关键词 graphene oxide graphene oxide-polypyrrole composite corrosion inhibition.
下载PDF
Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface 被引量:1
18
作者 宁仁霞 焦铮 鲍婕 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期83-87,共5页
A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite s... A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters. 展开更多
关键词 ab Narrow and Dual-Band Tunable Absorption of a Composite Structure with a graphene Metasurface THz LiF
下载PDF
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
19
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
Preparation of TiO2 Nanocrystals/Graphene Composite and Its Photocatalytic Performance
20
作者 Ling-juan Deng Yuan-zi Gu +1 位作者 Wei-xia Xu Zhan-ying Ma 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第3期321-326,共6页
TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by... TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation. 展开更多
关键词 TiO2 nanocrystals/graphene composite PHOTOCATALYST Chemical adsorptivity Extended light absorption Efficient charge separation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部