Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small...Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.展开更多
Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu...Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu- CNT interface. The enhanced thermal conductance is due to the larger contact area introduced by the graphene layer and the stronger thermal transfer ability of the Cu-gCNT interface. From the linear increasing thermal conductance with the increasing total contact area, an effective contact area of such an interface can be defined.展开更多
Nonprecious metal-based oxygen reduction reaction(ORR)electrocatalysts with high efficiency in both alkaline and acidic media are being intensively studied for the purpose of replacing expensive Pt-based catalysts;how...Nonprecious metal-based oxygen reduction reaction(ORR)electrocatalysts with high efficiency in both alkaline and acidic media are being intensively studied for the purpose of replacing expensive Pt-based catalysts;however,it is still a challenge to achieve superior ORR performances,especially in acidic media.Herein,by pyrolysis of mixed precursors of diammonium phosphate,melamine and hemin,we prepared a nanocomposite catalyst(denoted as FeP@PGL)composed of nitrogen-doped carbon nanosheets with embedded FeP nanoparticles(NPs),which were encapsulated by in-situ formed phosphorus-doped graphene layers.It is found that phosphorous was preferentially doped in the coating layers on FeP NPs,instead of in the carbon nanosheets.The FeP@PGL catalyst exhibited excellent ORR performance,with the onset and half-wave potential up to 1.01 and 0.90 V vs.the reversible hydrogen electrode(RHE)in alkaline media,and0.95 and 0.81 V vs.RHE in acidic media,respectively.By thorough microscopy and spectroscopy characterizations,the interfacial charge transfer between the encapsulated FeP NPs and P-doped graphene layers was identified,and the local work function of the catalyst surface was also reduced by the interfacial interaction.The interfacial synergy between the encapsulated FeP and phosphorus-doped graphene layers was essential to enhance the ORR performance.This study not only demonstrates the promising ORR properties of the encapsulated-FeP-based nanocomposite catalyst,but also provides direct evidence of the interfacial charge transfer effect and its role in ORR process.展开更多
The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and d...The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on (1120) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/ electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on (1120) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene.展开更多
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H...Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of展开更多
A bio-inspired layered material of reduced graphene oxide(RGOs) and calcium carbonate was synthesized via a one-pot strategy in DMF/H2O mixed solvent. The experimental results show that the product is a layered mate...A bio-inspired layered material of reduced graphene oxide(RGOs) and calcium carbonate was synthesized via a one-pot strategy in DMF/H2O mixed solvent. The experimental results show that the product is a layered material of wrinkled RGOs networks and micron-sized calcium carbonate particles with uniform granular diameter and homogeneous morphology, which are distributed between the layered gallery of the graphene scaffold. The polymorph and the morphology of the in-situ produced calcium carbonate particles can be manipulated by simply changing the temperature scheme. Besides, the graphene oxide was reduced to a certain extent, and the hierarchical wrinkles were generated in the RGOs layer by the in-situ formation of the calcium carbonate particles. This work provides a facile and controllable strategy for synthesizing layered material of RGOs and carbonates, and also presents a platform for making three-dimensional porous wrinkled RGOs networks.展开更多
Graphene has remarkable strength,such as yield strength and elastic constant.The dynamic behaviour of graphene sheet is affected by geometrical variation in atomic arrangement.This paper introduced graphene with armch...Graphene has remarkable strength,such as yield strength and elastic constant.The dynamic behaviour of graphene sheet is affected by geometrical variation in atomic arrangement.This paper introduced graphene with armchair atomic structure for estimating fundamental natural frequencies.The presented analysis can be useful for the possible high frequency nanomechanical resonator systems.The analytical formulation,based on classical plate theory and continuum solid modelling based finite element method have been performed for estimation of fundamental natural frequencies of single layer graphene sheet(SGLS)with different boundary conditions.The free edge and clamped edge boundary conditions have been considered.For simplifying analytical formulations,Blevins approach for dynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYS software.The effect of variation in geometrical parameters in terms of width and length of SLGS has been analysed for realization of ultra-high frequency based nanomechanical resonator systems.展开更多
Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
An exhaustive structural analysis was carried out on three Indian coals (ranging from sub-bituminous to high volatile bituminous coal) using a range of advanced characterization tools. Detailed investigations were c...An exhaustive structural analysis was carried out on three Indian coals (ranging from sub-bituminous to high volatile bituminous coal) using a range of advanced characterization tools. Detailed investigations were carded out using UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy coupled energy dispersive spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The X-ray and Raman peaks were deconvoluted and analyzed in details. Coal crystallites possess turbostratic structure, whose crystallite diameter and height increase with rank. The tJdC ratio plotted against aromaticity exhibited a decreasing trend, confirming the graphitization of coal upon leaching. It is also found that, with the increase of coal rank, the dependency of I20/I26 on La is saturated, due to the increase in average size of sp2 nanoclusters. In Raman spectra, the observed G peak (1585 cm^-1) and the D2 band arises from graphitic lattices. In IR spectrum, two distinct peaks at 2850 and 2920 cm i are attributed to the symmetric and asymmetric -CH2 stretching vibrations. The intense peak at - 1620 cm^-1, is either attributed to the aromatic ring stretching of C=C nucleus.展开更多
The synthesis of large area, homogenous, single layer graphene on cobalt (Co) and nickel (Ni) is reported. The process involves vacuum annealing of sputtered amorphous carbon (a-C) deposited on Co/sapphire or Ni...The synthesis of large area, homogenous, single layer graphene on cobalt (Co) and nickel (Ni) is reported. The process involves vacuum annealing of sputtered amorphous carbon (a-C) deposited on Co/sapphire or Ni/sapphire substrates. The improved crystallinity of the metal film, assisted by the sapphire substrate, proves to be the key to the quality of as-grown graphene film. The crystallinity of the Co and Ni metal films was improved by sputtering the metal at elevated temperature as was verified by X-ray diffraction (XRD). After sputtering of a-C and annealing, large area, single layer graphene that occupies almost the entire area of the substrate was produced. With this method, 100 mm2-area single layer graphene can be synthesized and is limited only by the substrate and vacuum chamber size. The homogeneity of the graphene film is not dependent on the cooling rate, in contrast to syntheses using polycrystalline metal films and conventional chemical vapor deposition (CVD) growth. Our facile method of producing single layer graphene on Co and Ni metal films should lead to large scale graphene-based applications.展开更多
Nanocomposites enhanced with two-dimensional, layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However, the...Nanocomposites enhanced with two-dimensional, layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However, the roles of "interlayers" in layered graphene fillers have yet to be fully explored. This paper examines the effect of interlayers on mechanical properties of layered graphene polymer composites.As an effective filler, the fundamental properties(in-plane Young's modulus E(L1), out-of-plane Young's modulus E(L2); shear modulus G(L12), major Poisson's ratio V(L12)) of the layered graphene were computed by using the Arridge's lamellar model. The effects of interlayers on effective moduli of layered graphene epoxy composites were examined through the Tandon-Weng model. The properties of the interlayer show noticeable impact on elastic properties of the composites, particular the out-of-plane properties(Young's modulus E2 and shear modulus G(12)). The interlayer spacing is seen to have much great influence on properties of the composites. As the interlayer spacing increases from 0.34 nm to 2 nm, all elastic properties of the composites have been greatly decreased.展开更多
Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effe...Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.展开更多
2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. Howe...2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.展开更多
The development of strain sensors with high stretchability and stability is an inevitable requirement for achieving full-range and long-term use of wearable electronic devices.Herein,a resistive micromesh reinforced s...The development of strain sensors with high stretchability and stability is an inevitable requirement for achieving full-range and long-term use of wearable electronic devices.Herein,a resistive micromesh reinforced strain sensor(MRSS)with high stretchability and stability is prepared,consisting of a laser-scribed graphene(LSG)layer and two styrene-block-poly(ethylene-ran-butylene)-block-poly-styrene micromesh layers embedded in Ecoflex.The micromesh reinforced structure endows the MRSS with combined characteris-tics of a high stretchability(120%),excellent stability(with a repetition error of 0.8%after 11000 cycles),and outstanding sensitivity(gauge factor up to 2692 beyond 100%).Impressively,the MRSS can still be used continauously within the working range without damage,even if stretched to 300%.Furthermore,compared with different structure sensors,the mechanism of the MRSS with high stretchability and stability is elucidated.What's more,a multilayer finite element model,based on the layered structure of the LSG and the morphology of the cracks,is proposed to investigate the strain sensing behavior and failure mechanism of the MRSS.Finally,due to the outstanding performance,the MRSS not only performes well in monitoring full-range human motions,but also achieves intelligent recognitions of various respiratory activities and ges-tures assisted by neural network algorithms(the accuracy up to 94.29%and 100%,respectively).This work provides a new approach for designing high-performance resistive strain sensors and shows great potential in full-range and long-term intelligent health management and human-machine interac-tions applications.展开更多
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金financially supported by Romanian National Authority for Scientific Research and Innovation (ANCSI) by NUCLEU Program PN 18 03 02 02
文摘Platinum catalysts play a major role in the large scale commercialization of direct methanol fuel cells(DMFC).Here,we present a procedure to create a nanostructural graphene-platinum(Gr Pt)composite containing a small amount(5.3 wt%)of platinum nanoparticles coated with at least four layers of graphene.The composite,as Gr Pt ink,was deposited on a glassy carbon electrode and its electrocatalytic activity in a methanol oxidation reaction(MOR)was evaluated in a 1 M CH3OH/1 M NaOH solution.The results indicated an enhanced catalytic performance of GrPt towards MOR in alkaline media compared with the Pt/C material.Electron energy-loss spectroscopy and X-ray photoelectron spectroscopy(recorded before and after the electrochemical assays)were employed to analyze the changes in the chemical composition of the nanomaterial and to explain the transformations that took place at the electrode surface.Our findings suggest that growing of graphene on platinum nanoparticles improve the catalytic performance of platinum-graphene composites towards MOR in alkaline media.
基金Supported by the National National Science Foundation of China under Grant No 61131004the Fundamental Research Funds for the Central Universities under Grant No DUT14LAB11
文摘Thermal conduetances between Cu and graphene covered carbon nanotubes (gCNTs) are calculated by molecular dynamics simulations. The results show that the thermal conductance is about ten times larger than that of Cu- CNT interface. The enhanced thermal conductance is due to the larger contact area introduced by the graphene layer and the stronger thermal transfer ability of the Cu-gCNT interface. From the linear increasing thermal conductance with the increasing total contact area, an effective contact area of such an interface can be defined.
基金supported by the National Natural Science Foundation of China(21773128,21534005,and 21421001)。
文摘Nonprecious metal-based oxygen reduction reaction(ORR)electrocatalysts with high efficiency in both alkaline and acidic media are being intensively studied for the purpose of replacing expensive Pt-based catalysts;however,it is still a challenge to achieve superior ORR performances,especially in acidic media.Herein,by pyrolysis of mixed precursors of diammonium phosphate,melamine and hemin,we prepared a nanocomposite catalyst(denoted as FeP@PGL)composed of nitrogen-doped carbon nanosheets with embedded FeP nanoparticles(NPs),which were encapsulated by in-situ formed phosphorus-doped graphene layers.It is found that phosphorous was preferentially doped in the coating layers on FeP NPs,instead of in the carbon nanosheets.The FeP@PGL catalyst exhibited excellent ORR performance,with the onset and half-wave potential up to 1.01 and 0.90 V vs.the reversible hydrogen electrode(RHE)in alkaline media,and0.95 and 0.81 V vs.RHE in acidic media,respectively.By thorough microscopy and spectroscopy characterizations,the interfacial charge transfer between the encapsulated FeP NPs and P-doped graphene layers was identified,and the local work function of the catalyst surface was also reduced by the interfacial interaction.The interfacial synergy between the encapsulated FeP and phosphorus-doped graphene layers was essential to enhance the ORR performance.This study not only demonstrates the promising ORR properties of the encapsulated-FeP-based nanocomposite catalyst,but also provides direct evidence of the interfacial charge transfer effect and its role in ORR process.
文摘The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on (1120) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/ electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on (1120) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene.
文摘Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of
基金Funded by the National Natural Science Foundation of China(No.51521001)the Ministry of Science and Technology of the People's Republic of China(2015DFR50650)
文摘A bio-inspired layered material of reduced graphene oxide(RGOs) and calcium carbonate was synthesized via a one-pot strategy in DMF/H2O mixed solvent. The experimental results show that the product is a layered material of wrinkled RGOs networks and micron-sized calcium carbonate particles with uniform granular diameter and homogeneous morphology, which are distributed between the layered gallery of the graphene scaffold. The polymorph and the morphology of the in-situ produced calcium carbonate particles can be manipulated by simply changing the temperature scheme. Besides, the graphene oxide was reduced to a certain extent, and the hierarchical wrinkles were generated in the RGOs layer by the in-situ formation of the calcium carbonate particles. This work provides a facile and controllable strategy for synthesizing layered material of RGOs and carbonates, and also presents a platform for making three-dimensional porous wrinkled RGOs networks.
文摘Graphene has remarkable strength,such as yield strength and elastic constant.The dynamic behaviour of graphene sheet is affected by geometrical variation in atomic arrangement.This paper introduced graphene with armchair atomic structure for estimating fundamental natural frequencies.The presented analysis can be useful for the possible high frequency nanomechanical resonator systems.The analytical formulation,based on classical plate theory and continuum solid modelling based finite element method have been performed for estimation of fundamental natural frequencies of single layer graphene sheet(SGLS)with different boundary conditions.The free edge and clamped edge boundary conditions have been considered.For simplifying analytical formulations,Blevins approach for dynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYS software.The effect of variation in geometrical parameters in terms of width and length of SLGS has been analysed for realization of ultra-high frequency based nanomechanical resonator systems.
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
文摘An exhaustive structural analysis was carried out on three Indian coals (ranging from sub-bituminous to high volatile bituminous coal) using a range of advanced characterization tools. Detailed investigations were carded out using UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy coupled energy dispersive spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The X-ray and Raman peaks were deconvoluted and analyzed in details. Coal crystallites possess turbostratic structure, whose crystallite diameter and height increase with rank. The tJdC ratio plotted against aromaticity exhibited a decreasing trend, confirming the graphitization of coal upon leaching. It is also found that, with the increase of coal rank, the dependency of I20/I26 on La is saturated, due to the increase in average size of sp2 nanoclusters. In Raman spectra, the observed G peak (1585 cm^-1) and the D2 band arises from graphitic lattices. In IR spectrum, two distinct peaks at 2850 and 2920 cm i are attributed to the symmetric and asymmetric -CH2 stretching vibrations. The intense peak at - 1620 cm^-1, is either attributed to the aromatic ring stretching of C=C nucleus.
文摘The synthesis of large area, homogenous, single layer graphene on cobalt (Co) and nickel (Ni) is reported. The process involves vacuum annealing of sputtered amorphous carbon (a-C) deposited on Co/sapphire or Ni/sapphire substrates. The improved crystallinity of the metal film, assisted by the sapphire substrate, proves to be the key to the quality of as-grown graphene film. The crystallinity of the Co and Ni metal films was improved by sputtering the metal at elevated temperature as was verified by X-ray diffraction (XRD). After sputtering of a-C and annealing, large area, single layer graphene that occupies almost the entire area of the substrate was produced. With this method, 100 mm2-area single layer graphene can be synthesized and is limited only by the substrate and vacuum chamber size. The homogeneity of the graphene film is not dependent on the cooling rate, in contrast to syntheses using polycrystalline metal films and conventional chemical vapor deposition (CVD) growth. Our facile method of producing single layer graphene on Co and Ni metal films should lead to large scale graphene-based applications.
基金supported by NASA Kentucky under NASA award No.:NNX15AR69H
文摘Nanocomposites enhanced with two-dimensional, layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However, the roles of "interlayers" in layered graphene fillers have yet to be fully explored. This paper examines the effect of interlayers on mechanical properties of layered graphene polymer composites.As an effective filler, the fundamental properties(in-plane Young's modulus E(L1), out-of-plane Young's modulus E(L2); shear modulus G(L12), major Poisson's ratio V(L12)) of the layered graphene were computed by using the Arridge's lamellar model. The effects of interlayers on effective moduli of layered graphene epoxy composites were examined through the Tandon-Weng model. The properties of the interlayer show noticeable impact on elastic properties of the composites, particular the out-of-plane properties(Young's modulus E2 and shear modulus G(12)). The interlayer spacing is seen to have much great influence on properties of the composites. As the interlayer spacing increases from 0.34 nm to 2 nm, all elastic properties of the composites have been greatly decreased.
基金the National Key Research and Development Program of China(No.2018YFB0406603)the National Natural Science Foundation of China(Nos.61574006,61522401,61927806,61521004,11634002,and U1632156)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000).
文摘Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.
基金financially supported by the National Science Foundation of China(Nos.51572007 and 51622203),"Recruitment Program of Global Experts"
文摘2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.
基金supported by National Natural Science Foundation of China(Nos.62201624,32000939,21775168,22174167,51861145202,U20A20168)Shenzhen Science and Technology Program(No.RCBS20221008093310024)+2 种基金Shenzhen Research Funding Program(No.JCYJ20190807160401657,JCYJ201908073000608)the Open Research Fund Program of Beijing National Research Center for Information Science and Technology(No.BR2023KF02010)support from Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province(No.2020B1212060077).
文摘The development of strain sensors with high stretchability and stability is an inevitable requirement for achieving full-range and long-term use of wearable electronic devices.Herein,a resistive micromesh reinforced strain sensor(MRSS)with high stretchability and stability is prepared,consisting of a laser-scribed graphene(LSG)layer and two styrene-block-poly(ethylene-ran-butylene)-block-poly-styrene micromesh layers embedded in Ecoflex.The micromesh reinforced structure endows the MRSS with combined characteris-tics of a high stretchability(120%),excellent stability(with a repetition error of 0.8%after 11000 cycles),and outstanding sensitivity(gauge factor up to 2692 beyond 100%).Impressively,the MRSS can still be used continauously within the working range without damage,even if stretched to 300%.Furthermore,compared with different structure sensors,the mechanism of the MRSS with high stretchability and stability is elucidated.What's more,a multilayer finite element model,based on the layered structure of the LSG and the morphology of the cracks,is proposed to investigate the strain sensing behavior and failure mechanism of the MRSS.Finally,due to the outstanding performance,the MRSS not only performes well in monitoring full-range human motions,but also achieves intelligent recognitions of various respiratory activities and ges-tures assisted by neural network algorithms(the accuracy up to 94.29%and 100%,respectively).This work provides a new approach for designing high-performance resistive strain sensors and shows great potential in full-range and long-term intelligent health management and human-machine interac-tions applications.