期刊文献+
共找到235篇文章
< 1 2 12 >
每页显示 20 50 100
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:3
1
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
2
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films 被引量:2
3
作者 Xi Zhang Junchi Ma +7 位作者 Wenhao Huang Jichen Zhang Chaoyang Lyu Yu Zhang Bo Wen Xin Wang Jing Ye Dongfeng Diao 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期1-11,共11页
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-... A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology. 展开更多
关键词 Direct flexible fabrication graphene nanosheets film Polariton energy transfer Flexible sensor Quantum manufacturing
下载PDF
Ag-GNSs/Sn-Ag-Cu复合钎料焊点的润湿性能及界面生长特征研究
4
作者 高子旋 屈敏 +1 位作者 康博雅 崔岩 《热加工工艺》 北大核心 2024年第13期50-54,共5页
采用Ag涂覆石墨烯纳米片(Ag-GNSs)作为增强体,制备Sn-3.0Ag-0.5Cu-(Ag-GNSs)新型复合无铅钎料,然后在Cu基板上制备了钎料焊点,并进行了150℃不同时长的等温时效处理,研究了不同含量的Ag-GNSs对无铅钎料Sn-3.0Ag-0.5Cu的润湿性、Cu基板/... 采用Ag涂覆石墨烯纳米片(Ag-GNSs)作为增强体,制备Sn-3.0Ag-0.5Cu-(Ag-GNSs)新型复合无铅钎料,然后在Cu基板上制备了钎料焊点,并进行了150℃不同时长的等温时效处理,研究了不同含量的Ag-GNSs对无铅钎料Sn-3.0Ag-0.5Cu的润湿性、Cu基板/钎料界面金属间化合物(IMC)生长特性的影响。结果表明,适量的Ag-GNSs可以显著地改善钎料的润湿性,当Ag-GNSs含量达到0.05wt%时润湿性最佳,与Sn-3.0Ag-0.5Cu钎料相比润湿角降低了54.43%。随着等温时效时间的延长,IMC层厚度增大,其生长行为由扩散控制。Ag-GNSs的添加可以抑制IMC层的生长,当Ag-GNSs的含量为0.05wt%时扩散系数达到最小值2.356×10^(-18)m^(2)/s。在0~0.2wt%范围内,Ag-GNSs的最佳添加量为0.05wt%。 展开更多
关键词 Ag涂覆石墨烯纳米片(Ag-gnss) Sn-3.0Ag-0.5Cu钎料 润湿性 IMC层
下载PDF
Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite 被引量:29
5
作者 李景夫 张雷 +1 位作者 肖金坤 周科朝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3354-3362,共9页
The mechanical and tribological properties of hot-pressed copper-based composites containing different amounts of graphene nanosheets(GNSs) are compared with those of copper-graphite(Gr) composites fabricated by t... The mechanical and tribological properties of hot-pressed copper-based composites containing different amounts of graphene nanosheets(GNSs) are compared with those of copper-graphite(Gr) composites fabricated by the same method.The results show that the Cu-GNSs composites exhibit higher relative density,microhardness and bending strength compared with Cu-Gr composites with the same volume fraction of GNSs and Gr.Moreover,the friction coefficients and wear rates reduce significantly by the addition of GNSs,whereas the limited impact on reducing friction and wear is found on graphite.The abrasive and delamination wear are the dominant wear mechanisms of the composites.It is believed that the superior mechanical and tribological performances of Cu-GNSs composites are attributed to the unique strengthening effect as well as the higher lubricating efficiency of graphene nanosheets compared with those of graphite,which demonstrates that GNS is an ideal filler for copper matrix composites,acting as not only an impactful lubricant but also a favorable reinforcement. 展开更多
关键词 graphene nanosheets GRAPHITE COMPOSITE friction coefficient wear mechanism
下载PDF
Graphene Quantum Dot‑Mediated Atom‑Layer Semiconductor Electrocatalyst for Hydrogen Evolution 被引量:4
6
作者 Bingjie Hu Kai Huang +6 位作者 Bijun Tang Zhendong Lei Zeming Wang Huazhang Guo Cheng Lian Zheng Liu Liang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期21-35,共15页
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculation... The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculations to predict possible functionalized graphene quantum dots(GQDs),which can enhance HER activity of bulk MoS_(2).Subsequently,we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS_(2) nanosheets mediated with GQDs(ALQD)by modulating the concentration of electron withdrawing/donating functional groups.Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role.Notably,the higher the concentration and strength of electron-withdrawing functional groups on GQDs,the thinner and more active the resulting ALQD are.Remarkably,the synthesized near atom-layer ALQD-SO_(3)demonstrate significantly improved HER performance.Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS_(2).Furthermore,it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials. 展开更多
关键词 graphene quantum dots MoS2 nanosheets Atom-layer Semiconductor electrocatalysts Hydrogen evolution reaction
下载PDF
Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage 被引量:13
7
作者 Daxiong Wu Caiyun Wang +3 位作者 Mingguang Wu Yunfeng Chao Pengbin He Jianmin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期24-32,共9页
Two-dimensional (2D) layered vanadium disulfide (VS2) is a promising anode material for lithium ion batteries (LIBs) due to the high theoretical capacity.However,it remains a challenge to synthesize monodispersed ultr... Two-dimensional (2D) layered vanadium disulfide (VS2) is a promising anode material for lithium ion batteries (LIBs) due to the high theoretical capacity.However,it remains a challenge to synthesize monodispersed ultrathin VS2 nanosheets to realize the full potential.Herein,a novel solvothermal method has been developed to prepare the monodispersed bowl-shaped NH3-inserted VS2 nanosheets (VS2).The formation of such a unique structure is caused by the blocked growth of (001) or (002) crystal planes in combination with a ripening process driven by the thermodynamics.The annealing treatment in Ar/H2creates porous monodispersed VS2(H-VS2),which is subsequently integrated with graphene oxide to form porous monodispersed H-VS2/rGO composite coupled with a reduction process.As an anode material for LIBs,H-VS2/rGO delivers superior rate performance and longer cycle stability:a high average capacity of 868/525 mAh g^-1 at a current density of 1/10 A g^-1;a reversible capacity of 1177/889 mAh g^-1 after 150/500 cycles at 0.2/1 A g^-1.Such excellent electrochemical performance may be attributed to the increased active sites available for lithium storage,the alleviated volume variations and the shortened Li-ion diffusion induced from the porous structure with large specific surface area,as well as the protective effect from graphene nanosheets. 展开更多
关键词 Vanadium DISULFIDE graphene LITHIUM-ION batteries nanosheetS COMPOSITE
下载PDF
P-doped BN nanosheets decorated graphene as the functional interlayer for Li–S batteries 被引量:9
8
作者 Jing Zhang Wenzhe Ma +4 位作者 Zhenyu Feng Fangfang Wu Denghu Wei Baojuan Xi Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期54-60,共7页
Lithium–sulfur(Li–S)batteries have attracted much attention due to their ultrahigh theoretical specific capacity.However,serious capacity attenuation caused by shuttle effect still inhibits the performance improveme... Lithium–sulfur(Li–S)batteries have attracted much attention due to their ultrahigh theoretical specific capacity.However,serious capacity attenuation caused by shuttle effect still inhibits the performance improvement.Herein,a modified separator consists of the few-layer graphene as a highly conductive network and stable scaffold to support P-doped boron nitride(denoted as BN-P@GO)as the functional interlayer of Li–S batteries.The cell with the interlayer provides an initial discharge capacity as high as1045.3 mAh g^-1,and retains a high reversible capacity of 728.7 mAh g^-1 at 1 C after 500 cycles with a capacity decay of 0.061%per cycle.Moreover,the rate capability is also superior to cells with BN@GO or BN-P interlayers,i.e.reversible capcity of 457.9 mAh g^-1 even at 3 C.The excellent electrochemical performance is ascribed to the synergistic effect of physical barrier and chemical adsorption for dissolved polysulfides provided by the modified layer.Furhtermore,it also mitigates the polarization and promotes kinetic reactions of the cells.This work provides a concise and effective method for commercialization of lithium–sulfur batteries. 展开更多
关键词 P-doped BN nanosheets graphene Multifunctional interlayer Lithium-sulfur batteries
下载PDF
The Effect of Thermal Exfoliation Temperature on the Structure and Supercapacitive Performance of Graphene Nanosheets 被引量:3
9
作者 Haiyang Xian Tongjiang Peng +1 位作者 Hongjuan Sun Jiande Wang 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期17-26,共10页
Graphene nanosheets(GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. Th... Graphene nanosheets(GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. The results show that the GSs with pore sizes center around 4.0 nm. With an increase of thermal reduction temperature, the number of stacking layers and the structure disorder degree increase, while the oxygen-containing groups content, BET surface area,and electrical resistivity of GSs decrease. The results indicate that 673 K is the preferable thermal exfoliation temperature to acquire good supercapacitive performance. In this case, the GSs have the best supercapacitive performance(233.1 F g-1) in a 6 mol L-1KOH electrolyte. The prepared GSs at the preferable thermal exfoliation temperature have good rate performance and cycle stability. 展开更多
关键词 graphene nanosheets Thermal exfoliation temperature Supercapacitive performance
下载PDF
Effect of modification degrees on the interfacial properties and EOR efficiency of amphiphilic Janus graphene oxide
10
作者 Han Jia Xin Wei +7 位作者 Qiu-Xia Wang Yuan-Bo Wang Shi-Jie Wen Fang-Ning Fan Qiang Wang Zhe Wang De-Xin Liu Pan Huang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1217-1224,共8页
Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their... Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their interfacial activity,which is essential for their performances in enhanced oil recovery(EOR).In this study,the interfacial properties of Janus graphene oxide(JGO)with various modification degrees at liquid-liquid and liquid-solid interfaces were systematically evaluated via the measurements of interfacial tension(IFT),dilatational modulus,contact angle,and EOR efficiency was further assessed by core flooding tests.It is found that JGO-5 with higher modification degree exhibits the greater ability to reduce IFT(15.16 mN/m)and dilatational modulus(26 mN/m).Furthermore,JGO can construct interfacial and climbing film with the assistance of hydrodynamic power to effectively detach the oil from the rock surface and greatly enhance oil recovery.Moderately modified JGO-2 can highly improve recovery of residual crude oil(11.53%),which is regarded as the promising EOR agent in practical application.The present study firstly focuses on the effects of modification degrees on the JGO interfacial properties and proposes diverse EOR mechanisms for JGO with different modification degrees. 展开更多
关键词 graphene oxide Modification degrees Janus nanosheets Interfacial film EOR
下载PDF
Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries 被引量:3
11
作者 Zuyue Yi Jingyi Xu +4 位作者 Zhenhua Xu Min Zhang Yanan He Jianchun Bao Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期241-248,共8页
Layer-structured Shsse attracts much attention as an anode material for potassium storage due to its la rge theoretical capacity.Unfortunately,their practical application is severely restrained by the dramatic volumet... Layer-structured Shsse attracts much attention as an anode material for potassium storage due to its la rge theoretical capacity.Unfortunately,their practical application is severely restrained by the dramatic volumetric variation of SnSSe.Herein,we synthesize ultrafine SnSSe/multilayer graphene nanosheet(SnSSe/MGS) by a vacuum solid-phase reaction and subsequent ball milling.Owing to the strong synergistic effect between the two components,the obtained SnSSe/MGS nanocomposite exhibits a high reversible capacity(423 mAh g^(-1) at 100 mA g^(-1)),excellent rate property(218 mAh g^(-1) at 5 A g^(-1)),and stable cycling performance(271 mAh g^(-1) after 500 cycles at 100 mA g^(-1)) in potassium-ion half batteries.Moreover,the full cell assembled by the SnSSe/MGS anode and the potassiated 3,4,9,10-perylene-tetracar boxylic aciddianhydride cathode shows excellent electrochemical performance between 0.2 and 3.3 V(209 mAh g^(-1) at 50 mA g^(-1) after 100 cycles).The presented two-step synthesis strategy of SnSSe/MGS may also provide ideas to craft other alloy-type anode materials. 展开更多
关键词 Ultrafine SnSSe Multilayer graphene nanosheet Potassium-ion batteries Anode Full cell
下载PDF
Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets 被引量:3
12
作者 Sajad Abolpour Moshizi Shohreh Azadi +4 位作者 Andrew Belford Amir Razmjou Shuying Wu Zhao Jun Han Mohsen Asadnia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期26-43,共18页
This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized fo... This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications.The results demonstrated a high sensitivity(103.91 mV(mm/s)-1) and a very low-velocity detection threshold(1.127 mm s-1) in steady-state flow monitoring.As one of many potential applications,we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals(SCCs).As a proof of concept,magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal(LSCC).The sensor was embedded into the artificial LSCC and tested for various physiological movements.The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry,frequency,and amplitude.The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring,intravenous therapy(Ⅳ),water leakage monitoring,and unmanned underwater robots through incorporation of the appropriate packaging of devices. 展开更多
关键词 Vertical graphene nanosheets Artificial vestibular system Bioinspired sensors Piezoresistive sensors
下载PDF
Reduced graphene oxide doping flower-like Fe_(7)S_(8) nanosheets for high performance potassium ion storage 被引量:2
13
作者 Na Cheng Xiaoyan Chen +1 位作者 Lushuang Zhang Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期604-611,共8页
Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the development of the future potassium-ion batteries(PIBs).In t... Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the development of the future potassium-ion batteries(PIBs).In this work,we synthesized reduced graphene oxide doping flower-like Fe_(7)S_(8) nanosheets electrode materials using one-step hydrothermal strategy.The rGO@Fe_(7)S_(8) composite is composed of homogeneous Fe_(7)S_(8) and reduced graphene oxide thin nanosheets.This unique structure not only promotes the penetration of electrolyte and increases the conductive of the pure Fe_(7)S_(8) electrode materials,but also relieves the volume expansion of K^(+) during charge/discharge process.When applied this interesting anode electrode for PIBs,the rGO@Fe_(7)S_(8) exhibits excellent electrochemical performance.It delivers a high reversible specific capacity of 445 mAh g^(-1) at 50 mA g^(-1),excellent rate performance(284 mAhg^(-1)at 500 mA g^(-1) and 237 mAh g^(-1) at 1000 mA g^(-1)),and a high cycling stability at 100 mA g^(-1)(maintained 355 mAh g^(-1) after 300 cycles). 展开更多
关键词 RGO@Fe_(7)S_(8) DOPING Reduced graphene oxide Potassium ion storage FLOWER-LIKE nanosheetS
下载PDF
Atomic Layer Coated Al_(2)O_(3) on Nitrogen Doped Vertical Graphene Nanosheets for High Performance Sodium Ion Batteries 被引量:3
14
作者 Zhiheng Wu Xiangdan Zhang +4 位作者 Lijun Deng Yongshang Zhang Zhuo Wang Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期285-294,共10页
Heteroatom doped graphene materials are considered as promising anode for high-performance sodium-ion batteries(SIBs).Defective and porous structure especially with large specific surface area is generally considered ... Heteroatom doped graphene materials are considered as promising anode for high-performance sodium-ion batteries(SIBs).Defective and porous structure especially with large specific surface area is generally considered as a feasible strategy to boost reaction kinetics;however,the unwanted side reaction at the anode hinders the practical application of SIBs.In this work,a precisely controlled Al_(2)O_(3)coated nitrogen doped vertical graphene nanosheets(NVG)anode material has been proposed,which exhibits excellent sodium storage capacity and cycling stability.The ultrathin Al_(2)O_(3)coating on the NVG is considered to help construct an advantageous interface between electrode and electrolyte,both alleviating the electrolyte decomposition and enhancing sodium adsorption ability.As a result,the optimal Al_(2)O_(3)coated NVG materials delivers a high reversible capacity(835.0 mAh g^(-1))and superior cycling stability(retention of 92.3%after 5000 cycles).This work demonstrates a new way to design graphene-based anode materials for highperformance sodium-ion batteries. 展开更多
关键词 Al_(2)O_(3) nitrogen doped vertical graphene nanosheets reaction kinetics sodium-ion batteries
下载PDF
一种新型Al-2.5GNPs细化剂制备及其对AZ31镁合金的细化作用
15
作者 姚春旭 白玉 +2 位作者 范文学 周欢欢 郝海 《铸造技术》 CAS 2024年第7期629-638,共10页
镁合金因自身强度低和塑性较差限制了其在工业领域的应用,向镁合金中添加晶粒细化剂的方法能够改善其组织并提高材料的强度和塑性,是提升镁合金性能的最有效方法之一。本文利用球磨工艺结合粉末冶金的方法制备出一种含有GNPs(石墨烯纳米... 镁合金因自身强度低和塑性较差限制了其在工业领域的应用,向镁合金中添加晶粒细化剂的方法能够改善其组织并提高材料的强度和塑性,是提升镁合金性能的最有效方法之一。本文利用球磨工艺结合粉末冶金的方法制备出一种含有GNPs(石墨烯纳米片)的新型镁合金细化剂。采用拉曼光谱分析法探究了不同球磨参数对GNPs的质量影响规律,得出较优球磨工艺参数为:转速300 r/min、球磨时间2 h,可以保证球磨后GNPs的高质量。将其混合粉体进行冷压,并在400℃烧结2 h,得到含有GNPs且组织致密、成型良好的Al-2.5GNPs细化剂。采用OM、SEM、XRD、TEM等表征手段初步分析了细化剂中Al4C3和GNPs对AZ31镁合金中的细化及强化机理。在720℃下加入质量分数为1.5%的Al-2.5GNPs细化剂,可以使AZ31镁合金的晶粒尺寸从228.8μm细化至65.6μm,抗拉强度从112.6 MPa提升至178.2 MPa,伸长率从8.9%提升至16.7%,分别提高了58.3%和87.6%。 展开更多
关键词 石墨烯纳米片 球磨工艺 粉末冶金法 AZ31镁合金 晶粒细化
下载PDF
Corrosion Behavior of Graphene Nanosheets Reinforced Magnesium Matrix Composites in Simulated Body Fluids
16
作者 Liwen Chen Jianhui Jing +6 位作者 Lulu Zhang Jing Li Weipeng Chen Limin Li Yuan Zhao Hua Hou Yuhong Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期525-536,共12页
Magnesium(Mg)alloy is considered as a promising biodegradable implant material but restricted to rapid degradation.Here,the new strategies based on thixomolding process had been explored to utilize the outstanding ant... Magnesium(Mg)alloy is considered as a promising biodegradable implant material but restricted to rapid degradation.Here,the new strategies based on thixomolding process had been explored to utilize the outstanding anti-permeability of graphene nanosheets(GNPs)while inhibit its galvanic corrosion with the matrix,so as to improve the corrosion resistance of composites.The agglomerate of GNPs with 0.9 wt%content is the main reason for the deterioration of corrosion performance due to the formation of micro-galvanic corrosion.The grain refinement of composites with 0.6 wt%content had positive effects on the better corrosion resistance.After process adjusting,the unique distributions of GNPs along grain boundaries play a vital role in improving the corrosion resistance.It can be ascribed to the following mechanisms:(I)The barriers can be established between the Mg matrix and corrosive medium,hence blocking the charge transfer at the interface;(II)The GNPs can effectively promote apatite deposition on the Mg matrix,leading to form dense apatite layers and prevent the further invasion of SBF;(III)The GNPs acting as reinforcements exists in the corrosion layer and apatite layer,impede the apatite layer falling off from the Mg matrix.These findings broaden the horizon for biomedical applications in Mg matrix composites to realize desired performances. 展开更多
关键词 Magnesium matrix composite graphene nanosheets Corrosion resistance
原文传递
Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation
17
作者 杨苏东 陈琳 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期539-543,共5页
We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with... We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un- der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst. 展开更多
关键词 graphene nanosheet Pd nanostructure nanodendrite ELECTROCATALYST
下载PDF
Boosting the catalytic activity toward oxygen reduction via a heterostructure of porous iron oxide-decorated 2D NiO/NG nanosheets
18
作者 Kakali Maiti Matthew T.Curnan +2 位作者 Hyung Jun Kim Kyeounghak Kim Jeong Woo Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期669-681,I0016,共14页
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,... As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications. 展开更多
关键词 N-doped graphene Holey Fe_(2)O_(3)nanocrystals NiO nanosheets High catalytic performance ORR
下载PDF
Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition
19
作者 Jian YANG Ruiyang XU +4 位作者 Angjian WU Xiaodong LI Li LI Wangjun SHEN Jianhua YAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期86-95,共10页
One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties ... One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties of the ICPECVD process were revealed via electrical diagnosis and optical emission spectroscopy. The coil current and voltage increased linearly with the augmenting of injected power, and CH, C2, H2 and H were detected at a wavelength from 300 to 700 nm, implying the generation of abundant graphene-building species. The morphology and structure of solid carbon products, graphene nanosheets, were systemically characterized in terms of the variations of operating conditions, such as pressure, temperature, gas proportion, etc. The results indicated that an appropriate operating condition was indispensable for the growth process of graphene nanosheets. In the present work, the optimized result was achieved at the pressure, heating temperature, applied power and gas proportion of 600 mTorr, 800 ~C, 500 W and 20:20:15, respectively, and the augmenting of both CH4 and H2 concentrations had a positive effect on the etching of amorphous carbon. Additionally, H2 and C2 hydrocarbons were detected as the main exhaust gases. The selectivity of H2 and C2H2, measured in exhaust gases, reached up to 52% and 8%, respectively, which implied a process of free radical reactions and electron collision dissociation. Based on a comprehensive investigation of spectral and electrical parameters and synthesized products, the reaction mechanism of collision, dissociation, diffusion, etc, in ICPECVD could be speculated, providing a probable guide for experimental and industrial applications. 展开更多
关键词 vertical graphene nanosheets gaseous products OES electrical diagnosis ICPECVD
下载PDF
Functional graphene oxide nanosheets modified with cyclodextrins for removal of Bisphenol A from water
20
作者 Zhi-Hao Chen Zhuang Liu +6 位作者 Lei Zhang Quan-Wei Cai Jia-Qi Hu Wei Wang Xiao-Jie Ju Rui Xie Liang-Yin Chu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期79-87,共9页
A novel type of functional graphene oxide nanosheets(GNs)modified with b-cyclodextrins(b-CDs)have been developed by coating dopamine-functionalized cyclodextrin(DACD)molecules on GNs for removing Bisphenol A(BPA)molec... A novel type of functional graphene oxide nanosheets(GNs)modified with b-cyclodextrins(b-CDs)have been developed by coating dopamine-functionalized cyclodextrin(DACD)molecules on GNs for removing Bisphenol A(BPA)molecules from water.The DACD molecules with both b-CD groups for achieving adsorption property and dopamine(DA)groups for achieving adhesion property are synthesized by grafting DA onto carboxymethyl-b-cyclodextrin(CmbCD).The proposed DACD molecules can be firmly coated on the surfaces of various inorganic and organic substrates.Due to the large specific surface area of GNs,DACD-coated GNs(DACD@GNs)are proposed for efficient adsorption separation of BPA molecules from water.Due to the host-gust complexation between the BPA molecules in water and b-CDs on DACD@GNs,the fabricated DACD@GNs exhibit excellent adsorption performances.The adsorption kinetics can be explained via the pseudo-second-order model effectively.The experimental adsorption capacity of DACD@GNs is 11.29 mg·g^(-1) for BPA.Furthermore,after the adsorption process,the DACD@GNs can be easily separated from aqueous solutions via vacuum filtration with porous membranes,and then regenerated by simply washing with ethanol.The proposed strategy in this study can be used for effectively functionalizing the surfaces of various substrates with functional b-CDs,which is highly promising in applications in the field of adsorption separations,especially water treatments. 展开更多
关键词 Adsorption separation b-Cyclodextrin Bisphenol A graphene oxide nanosheets DOPAMINE
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部