Bulk graphene oxide (GO) shows great potential in a variety of applications, such as sensors,photodetectors, supercapacitors, lithium ion batteries and catalysts. However, its thermal conductivity,one of the most im...Bulk graphene oxide (GO) shows great potential in a variety of applications, such as sensors,photodetectors, supercapacitors, lithium ion batteries and catalysts. However, its thermal conductivity,one of the most important and fundamental physical properties, is still less known. Herein, we havesystematically investigated the thermal conductivity of bulk GOs and find that it can be tailored by tuningtheir oxidation degree during preparation process. Notably, the cross-plane thermal conductivity of bulkGO, in comparison with its precursor graphite, exhibits more than 100 times decrease at roomtemperature. The dependence of thermal conductivity of GO on oxidation degree is attributed to thechemical and structural changes by introducing oxygen atoms and oxygen-containing functional groups,which can lead to a significant enhancement in atomic- and nano-scale phonon scattering. Furthermore,we reveal that the thermal conductivity of bulk GOs exhibits evident anisotropic behavior. These resultsprovide fundamental understanding and valuable information on thermal transport properties of bulkGOs for various practical applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21273228 and 51290272)100 Talents Program of Chinese Academy of Sciences
文摘Bulk graphene oxide (GO) shows great potential in a variety of applications, such as sensors,photodetectors, supercapacitors, lithium ion batteries and catalysts. However, its thermal conductivity,one of the most important and fundamental physical properties, is still less known. Herein, we havesystematically investigated the thermal conductivity of bulk GOs and find that it can be tailored by tuningtheir oxidation degree during preparation process. Notably, the cross-plane thermal conductivity of bulkGO, in comparison with its precursor graphite, exhibits more than 100 times decrease at roomtemperature. The dependence of thermal conductivity of GO on oxidation degree is attributed to thechemical and structural changes by introducing oxygen atoms and oxygen-containing functional groups,which can lead to a significant enhancement in atomic- and nano-scale phonon scattering. Furthermore,we reveal that the thermal conductivity of bulk GOs exhibits evident anisotropic behavior. These resultsprovide fundamental understanding and valuable information on thermal transport properties of bulkGOs for various practical applications.