With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studi...Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.展开更多
We study the adsorption of zigzag graphene nanoribbons (GNRs) on Si(001) substrates using the first-principles density functional theory, exploring the effects of the interface interaction on the structurM and ele...We study the adsorption of zigzag graphene nanoribbons (GNRs) on Si(001) substrates using the first-principles density functional theory, exploring the effects of the interface interaction on the structurM and electronic prop- erties of both GNRs and the substrate. By comparing the adsorption structures predicted by the local density approximation, the generalized gradient approximation, and the DFT-D2 approach, we confirm that both edge and inner C atoms of GNRs can form covalent bonds with the substrate. The GNR/substrate interaction destroys the antiferromagnetic coupling of the edge states in GNB.s. The charge transfer from the substrate to GNRs exhibits a complicated pattern and is mainly localized near the C-Si bonds. We also observe a strong perturbation of the surface states and a surface reconstruction transition induced by the GNR adsorption.展开更多
Graphene oxide(GO)is one typical two-dimension structured and oxygenated planar molecular material.Researchers across multiple disciplines have paid enormous attention to it due to the unique physiochemical properties...Graphene oxide(GO)is one typical two-dimension structured and oxygenated planar molecular material.Researchers across multiple disciplines have paid enormous attention to it due to the unique physiochemical properties.However,models used to describe the structure of GO are still in dispute and ongoing to update.And currently,synthesis methods for mass production are seemingly abundant but in fact,dominated by a few core methodologies.To update with the state-of-art opinions and progresses,herein we present a mini critical review regarding the synthesis of GO as well as its models and simulations of structure.Also,we discuss the perspectives.展开更多
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s...Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape contin...We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.展开更多
The atomic and electronic structures of a graphene monolayer on a Ru(0001) surface under compressive strain are investigated by using first-principles calculations.Three models of graphene monolayers with different ...The atomic and electronic structures of a graphene monolayer on a Ru(0001) surface under compressive strain are investigated by using first-principles calculations.Three models of graphene monolayers with different carbon periodicities due to the lattice mismatch are proposed in the presence and the absence of the Ru(0001) substrate separately.Considering the strain induced by the lattice mismatch,we optimize the atomic structures and investigate the electronic properties of the graphene.Our calculation results show that the graphene layers turn into periodic corrugations and there exist strong chemical bonds in the interface between the graphene N × N superlattice and the substrate.The strain does not induce significant changes in electronic structure.Furthermore,the results calculated in the local density approximation (LDA) are compared with those obtained in the generalized gradient approximation (GGA),showing that the LDA results are more reasonable than the GGA results when only two substrate layers are used in calculation.展开更多
The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with t...The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.展开更多
The laser scribing of polyimide(PI, Kapton) film is a new, simple and effective method for graphene preparation. Moreover,the superhydrophobic surface modification can undoubtedly widen the application fields of graph...The laser scribing of polyimide(PI, Kapton) film is a new, simple and effective method for graphene preparation. Moreover,the superhydrophobic surface modification can undoubtedly widen the application fields of graphene. Herein, inspired by the hydrophobic and self-cleaning properties of natural Oxalis corniculata Linn. leaves, we propose a novel bionic manufacturing method for superhydrophobic laser-induced graphene(LIG). By tailoring the geometric parameters(size, roughness and height/area ratio) and chemical composition, the three-dimensional(3D) multistage LIG, i.e., with micro-jigsaw-like and porous structure, can deliver a static water contact angle(WCA) of 153.5° ± 0.6°, a water sliding angle(WSA) of 2.5° ±0.5°, and great superhydrophobic stability lasting for 100 days(WCAs ≈ 150°). This outstanding water repellency is achieved by the secondary structure of jigsaw-like LIG, a porous morphology that traps air layers at the solid–liquid interface. The robust self-cleaning and anti-stick functions of 3D bionic and multistage LIG are demonstrated to confirm its great potential in wearable electronics.展开更多
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi...Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes.展开更多
The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effective...The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.展开更多
Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of g...Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.展开更多
A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite s...A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters.展开更多
This paper focuses on preparation of colloidal solution of graphene-like structures from different ranks of coals: brown coal,bituminous coal,low-volatile bituminous coal,anthracite. It was found that brown coal therm...This paper focuses on preparation of colloidal solution of graphene-like structures from different ranks of coals: brown coal,bituminous coal,low-volatile bituminous coal,anthracite. It was found that brown coal thermo-oxidative destruction leads to formation of small d = 32 nm( V = 17%) and large d = 122 nm( V = 11%) fractions of nanoparticles. The thermo-oxidative destruction of bituminous coal leads to formation of nanoparticles d = 50 nm( V = 5.2%) and d = 164 nm( V = 16%). Thermooxidative destruction of low-volatile bituminous coal and anthracite leads to formation of nanoparticles,predominantly,d = 122-190 nm. Carbon nanostructures obtained from coal are negatively charged at pH= 2-12. Colloidal solution of carbon nanostructures at dispersed phase concentration 0. 01 mg/mL is stable for 1 month. Electron diffraction patterns and X-ray analysis of carbon nanostructures showed that nanostructure from brown coal is amorphous and nanostructure from anthracite is crystalline. Results of coal macromolecules modeling and graphene-like structures obtained from them are presented.展开更多
Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame...Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame, covalent C-C bonds are taken as beams joined together with carbon atoms placed at the joints. Uniaxial beam elements, defined by their cross-sectional area, material properties, and moment of inertia represent the covalent bonds. The parameters of the beam elements are determined by establishing equivalence between structural and computational mechanics. However, the bonds connecting the carbon atoms do not have physical existence as they are a compromise between attractive and repulsive forces. Also, defects at nanoscale make graphene different from frame-like structure. In addition, the topography of graphene makes it non-linear structure and even the axial loading changes to eccentric loading. Here we show that, by using basic statics principles, disparities between graphene and frame-likes structures can be highlighted.展开更多
Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-Si...Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Si- terminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm^2/V.s at a carrier density of 9.8.×10^12 cm^-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.展开更多
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400,...In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.展开更多
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 12304069)。
文摘Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.
基金Supported by the National Natural Science Foundation of China under Grant No 11204296the National Basic Research Program of China under Grant No 2013CB933304
文摘We study the adsorption of zigzag graphene nanoribbons (GNRs) on Si(001) substrates using the first-principles density functional theory, exploring the effects of the interface interaction on the structurM and electronic prop- erties of both GNRs and the substrate. By comparing the adsorption structures predicted by the local density approximation, the generalized gradient approximation, and the DFT-D2 approach, we confirm that both edge and inner C atoms of GNRs can form covalent bonds with the substrate. The GNR/substrate interaction destroys the antiferromagnetic coupling of the edge states in GNB.s. The charge transfer from the substrate to GNRs exhibits a complicated pattern and is mainly localized near the C-Si bonds. We also observe a strong perturbation of the surface states and a surface reconstruction transition induced by the GNR adsorption.
基金Supported by Beijing University of Technology(105000546317502,105000514116002)Beijing Municipal Education Commission(KM201910005007).
文摘Graphene oxide(GO)is one typical two-dimension structured and oxygenated planar molecular material.Researchers across multiple disciplines have paid enormous attention to it due to the unique physiochemical properties.However,models used to describe the structure of GO are still in dispute and ongoing to update.And currently,synthesis methods for mass production are seemingly abundant but in fact,dominated by a few core methodologies.To update with the state-of-art opinions and progresses,herein we present a mini critical review regarding the synthesis of GO as well as its models and simulations of structure.Also,we discuss the perspectives.
基金Financial support from the National Natural Science Foundation of China (Nos. 21873026 and 21573058)the Program for Innovative Research Team in Science and Technology in University of Henan Province (17IRTSTHN 001) is gratefully acknowledged
文摘Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金supported by the Key Specific Projects in the National Science&Technology Program,China(Grant No.2011ZX02707)the Key Research Foundationfrom the Ministry of Education of China(Grant No.JY10000925016)the Specialized Research Fund from Xianyang Normal University,China(GrantNos.13XSYK010 and 201302026)
文摘We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774176)National Basic Research Program of China (Grant Nos 2006CB806202,2006CB921305 and 2006CB929103)the Shanghai Supercomputing Center,Chinese Academy of Sciences,and the Supercomputing Center,Chinese Academy of Sciences
文摘The atomic and electronic structures of a graphene monolayer on a Ru(0001) surface under compressive strain are investigated by using first-principles calculations.Three models of graphene monolayers with different carbon periodicities due to the lattice mismatch are proposed in the presence and the absence of the Ru(0001) substrate separately.Considering the strain induced by the lattice mismatch,we optimize the atomic structures and investigate the electronic properties of the graphene.Our calculation results show that the graphene layers turn into periodic corrugations and there exist strong chemical bonds in the interface between the graphene N × N superlattice and the substrate.The strain does not induce significant changes in electronic structure.Furthermore,the results calculated in the local density approximation (LDA) are compared with those obtained in the generalized gradient approximation (GGA),showing that the LDA results are more reasonable than the GGA results when only two substrate layers are used in calculation.
基金Project supported by the National Key Basic Research Program of China (Grant No.2011CB932700)the National Natural Science Foundation of China (Grant Nos.51272279,51072223,and 50972162)
文摘The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.
基金supported by the Natural Science Foundation of Guangdong Province, China (No.2021B1515020087)the National Natural Science Foundation of China (No.51905178)。
文摘The laser scribing of polyimide(PI, Kapton) film is a new, simple and effective method for graphene preparation. Moreover,the superhydrophobic surface modification can undoubtedly widen the application fields of graphene. Herein, inspired by the hydrophobic and self-cleaning properties of natural Oxalis corniculata Linn. leaves, we propose a novel bionic manufacturing method for superhydrophobic laser-induced graphene(LIG). By tailoring the geometric parameters(size, roughness and height/area ratio) and chemical composition, the three-dimensional(3D) multistage LIG, i.e., with micro-jigsaw-like and porous structure, can deliver a static water contact angle(WCA) of 153.5° ± 0.6°, a water sliding angle(WSA) of 2.5° ±0.5°, and great superhydrophobic stability lasting for 100 days(WCAs ≈ 150°). This outstanding water repellency is achieved by the secondary structure of jigsaw-like LIG, a porous morphology that traps air layers at the solid–liquid interface. The robust self-cleaning and anti-stick functions of 3D bionic and multistage LIG are demonstrated to confirm its great potential in wearable electronics.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. YWF-10-02-040)
文摘Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes.
基金the National Key R&D Program of China(2019YFD1101200,2019YFD1101204)Natural Science Foundation of China(51772150)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Provincial Key Research and Development Program(BE2018008-1).
文摘The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.
基金a joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft(NSFC-DFG) project(NSFC grant 51861135313,DFG JA466/39-1)supported by National Natural Science Foundation of China(21706199)International Science & Technology Cooperation Program of China(2015DFE52870)Jilin Province Science and Technology Development Plan(20180101208JC)。
文摘Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.
基金Supported by the Program for the University Excellent Young Talents under Grant No gxyq2017074the Anhui Key Research and Development Plan under Grant No 1704e1002208the Natural Science Research Project of Anhui Province Education Department under Grant No KJ2017A396
文摘A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters.
基金supported by the Ministry of Education and Science of the Russian Federation(the Agreement number 02.a03.21.0008)
文摘This paper focuses on preparation of colloidal solution of graphene-like structures from different ranks of coals: brown coal,bituminous coal,low-volatile bituminous coal,anthracite. It was found that brown coal thermo-oxidative destruction leads to formation of small d = 32 nm( V = 17%) and large d = 122 nm( V = 11%) fractions of nanoparticles. The thermo-oxidative destruction of bituminous coal leads to formation of nanoparticles d = 50 nm( V = 5.2%) and d = 164 nm( V = 16%). Thermooxidative destruction of low-volatile bituminous coal and anthracite leads to formation of nanoparticles,predominantly,d = 122-190 nm. Carbon nanostructures obtained from coal are negatively charged at pH= 2-12. Colloidal solution of carbon nanostructures at dispersed phase concentration 0. 01 mg/mL is stable for 1 month. Electron diffraction patterns and X-ray analysis of carbon nanostructures showed that nanostructure from brown coal is amorphous and nanostructure from anthracite is crystalline. Results of coal macromolecules modeling and graphene-like structures obtained from them are presented.
文摘Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame, covalent C-C bonds are taken as beams joined together with carbon atoms placed at the joints. Uniaxial beam elements, defined by their cross-sectional area, material properties, and moment of inertia represent the covalent bonds. The parameters of the beam elements are determined by establishing equivalence between structural and computational mechanics. However, the bonds connecting the carbon atoms do not have physical existence as they are a compromise between attractive and repulsive forces. Also, defects at nanoscale make graphene different from frame-like structure. In addition, the topography of graphene makes it non-linear structure and even the axial loading changes to eccentric loading. Here we show that, by using basic statics principles, disparities between graphene and frame-likes structures can be highlighted.
文摘Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Si- terminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm^2/V.s at a carrier density of 9.8.×10^12 cm^-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.
基金Project supported by the Key Research Foundation of the Ministry of Education of China (Grant No. JY10000925016)
文摘In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.