The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) ...The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.展开更多
The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between comp...The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between computed and measured results outdoor. The results show that the main scattering source of the dispenser is the mirror reflecting of the body; in the most crucial nose-on region, the nose mirror reflecting plays important role; the corner reflecting is important to the fins' RCS. The corresponding measures to reduce dispenser's RCS are proposed. It is indicated that to reduce RCS, shaping should be adopts first, while aerodynamic characteristics and stealth characteristics should be considered synthetically during the design of dispenser.展开更多
This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algor...This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algorithm (GA) for calculating the radar cross section (RCS) and optimizing the geometric parameters of a large and complex target respectively. A new wedge modeling (WM) scheme is presented for calculating the high-frequency RCS of wedge with only one visible facet based on the method of equivalent currents (MEC). The applications of GODS to 2D cross-section and 3D surface are respectively implemented by choosing an average of monostatic RCS values corresponding to a series of incident angles over a frequency band as the optimum objective function. And the results demonstrate that the RCS can be effectively and conveniently reduced by the GODS presented in this article.展开更多
基金supported by the National Natural Science Foundation of China (60871069)
文摘The angular glint in the near field plays an important role on radar tracking errors. To predict it more efficiently for electrically large targets, a new method based on graphical electromagnetic computing (GRECO) is proposed. With the benefit of the graphic card, the GRECO prediction method is faster and more accurate than other methods. The proposed method at the first time considers the special case that the targets cannot be completely covered by radar beams, which makes the prediction of radar tracking errors more self-contained in practical circumstances. On the other hand, the process of the scattering center extraction is omitted, resulting in possible angular glint prediction in real time. Comparisons between the simulation results and the theoretical ones validate its correctness and value to academic research and engineering applications.
文摘The radar cross section (RCS) of dispenser and its components is computed by graphical electromagnetic computing (GRECO) method, which bases on physical optics (PO) method. A satisfied agreement is gotten between computed and measured results outdoor. The results show that the main scattering source of the dispenser is the mirror reflecting of the body; in the most crucial nose-on region, the nose mirror reflecting plays important role; the corner reflecting is important to the fins' RCS. The corresponding measures to reduce dispenser's RCS are proposed. It is indicated that to reduce RCS, shaping should be adopts first, while aerodynamic characteristics and stealth characteristics should be considered synthetically during the design of dispenser.
基金National Natural Science Foundation of China (20095251024)
文摘This article seeks to outline an integrated and practical geometric optimization design system (GODS) incorporating hybrid graphical electromagnetic computing-wedge modeling (GRECO-WM) scheme and the genetic algorithm (GA) for calculating the radar cross section (RCS) and optimizing the geometric parameters of a large and complex target respectively. A new wedge modeling (WM) scheme is presented for calculating the high-frequency RCS of wedge with only one visible facet based on the method of equivalent currents (MEC). The applications of GODS to 2D cross-section and 3D surface are respectively implemented by choosing an average of monostatic RCS values corresponding to a series of incident angles over a frequency band as the optimum objective function. And the results demonstrate that the RCS can be effectively and conveniently reduced by the GODS presented in this article.