期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector
1
作者 Xuexia Chen Dongwen Yang +6 位作者 Xun Yang Qing Lou Zhiyu Liu Yancheng Chen Chaofan Lv Lin Dong Chongxin Shan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期275-283,共9页
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS... Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices. 展开更多
关键词 graphitic carbon nitride high-temperature stability lateral photovoltaic effect position-sensitive detectors two-dimensional materials
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries 被引量:2
2
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes POLYMERS Graphitic carbon nitride nanosheets Composites Room temperature All-solid-state battery
下载PDF
Extraordinary Ultrahigh-Capacity and Long Cycle Life Lithium-Ion Batteries Enabled by Graphitic Carbon Nitride-Perylene Polyimide Composites
3
作者 Michael Ruby Raj Jungwon Yun +1 位作者 Dong-kyu Son Gibaek Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期199-226,共28页
Graphitic carbon nitride(g-C_(3)N_(4))is widely used in organic metal-ion batteries owing to its high porosity,facile synthesis,stability,and high-rate performance.However,pristine g-C_(3)N_(4)nanosheets exhibit poor ... Graphitic carbon nitride(g-C_(3)N_(4))is widely used in organic metal-ion batteries owing to its high porosity,facile synthesis,stability,and high-rate performance.However,pristine g-C_(3)N_(4)nanosheets exhibit poor electrical conductivity,irreversible metal-ion storage capacity,and short-term cycling owing to their high concentration of graphitic-N species.Herein,a series of 3,4:9,10-perylenetetracarboxylic diimide-coupled g-C_(3)N_(4)composite anode materials,CN-PI_(x)(x=0.2,0.5,0.75,and 1),was investigated,which exhibited an unusually high surface nitrogen content(23.19-39.92 at.%)and the highest pyridinic-N,pyrrolic-N,and graphitic-N contents reported to date.The CN-PI_(1)anode delivers an unprecedented and continuously increasing ultrahigh discharging capacity of exceeding 8400 mAh g^(-1)(1.96 mWh cm^(-2))at 100 mA g^(-1)with high specific energy density(E_(sp))of~7700 Wh kg^(-1)and the volumetric energy density(E_(v))of~14956 Wh L-1 and an excellent long-term stability(414 mAh g^(-1)or 0.579 mWh cm^(-2)at 1 A g^(-1)).Furthermore,the activation of the CN-PI_(x)electrodes contributes to their superior electrochemical performance,resulting from the fact that the Li+is not only stored in the CN-PI_(x)composites but also CN-PI_(x)activated the Li^(0)adlayer on the CN-PI_(1)-Cu heterojunction as an SEI layer to avoid the direct contact of Li^(0)phase and the electrolyte.The CN-PI_(1)full cell with LiCoO_(2)as the cathode delivers a discharge capacity of~587 mAh g^(-1)at a 1 A g^(-1)after 250 cycles with a Coulombic efficiency nearly 99%.This study provides a strategy to develop N-doped g-C_(3)N_(4)-based anode materials for realizing long-lasting energy storage devices. 展开更多
关键词 graphitic carbon nitride lithium-ion batteries organic electrode perylene polyimide semiconductor-metal heterojunction
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
4
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/activated carbon nanocomposites 被引量:2
5
作者 Shuyang Li Zhiwei Niu +4 位作者 Duoqiang Pan Zhenpeng Cui Hewen Shang Jie Lian Wangsuo Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第7期3581-3584,共4页
Uranium removal from aqueous solutions using environmentally friendly photocatalytic technology is a novel approach for resource recovery.Herein,carbon nitride/activated carbon composite materials(CN/AC)were investiga... Uranium removal from aqueous solutions using environmentally friendly photocatalytic technology is a novel approach for resource recovery.Herein,carbon nitride/activated carbon composite materials(CN/AC)were investigated for U(Ⅵ)reduction under visible light.An exceptional boost in photocatalytic activity was observed for CN/AC composites(up to 70 times over the conventional bulk g-C_(3)N_(4)).The strong interactive conjugatedπ-bond structure between g-C_(3)N_(4) and AC accelerated the migration of carriers and then prolonged the electron lifetime.CN/AC composites exhibited excellent compatibility with different water substrates and were resilience to a wide range of p H changes and abundant competitive anions/cations.Quenching experiments and electron microscopy characterization indicated that U(VI)was reduced by photogenerated electrons and deposited on the edge of CN/AC composites.The low-cost,high-performance carbon-based composite material proposed in this work is a potential candidate for the efficient treatment of radioactive wastewater. 展开更多
关键词 Uranium removal PHOTOREDUCTION Graphitic carbon nitride Activated carbon Composite material
原文传递
Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts 被引量:15
6
作者 刘亚男 王瑞霞 +5 位作者 杨正坤 杜虹 姜一帆 申丛丛 梁况 徐安武 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2135-2144,共10页
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4... With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance. 展开更多
关键词 Oxygen deficient zinc oxide Graphitic carbon nitride Hybrid photocatalysts PHOTODEGRADATION Z-scheme
下载PDF
Hot‐electron‐assisted S‐scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad‐spectrum photocatalytic H_(2)generation 被引量:9
7
作者 Qinqin Liu Xudong He +3 位作者 Jinjun Peng Xiaohui Yu Hua Tang Jun Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1478-1487,共10页
Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D pla... Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D plasmonic W_(18)O_(49)nanowires onto 2D g‐C_(3)N_(4)nanosheets.W_(18)O_(49)nanowiresplay the dual role of a light absorption antenna—that extends light adsorption—and a hot electrondonor—that assists the water reduction reaction in a wider light spectrum range.Moreover,S‐scheme charge transfer resulting from the matching bandgaps of W_(18)O_(49)and g‐C_(3)N_(4)can lead tostrong redox capability and high migration speed of the photoinduced charges.Consequently,in thisstudy,W_(18)O_(49)/g‐C_(3)N_(4)hybrids exhibited higher photocatalytic H2 generation than that of pristineg‐C_(3)N_(4)under light irradiation of 420–550 nm.Furthermore,the H2 production rate of thebest‐performing W_(18)O_(49)/g‐C_(3)N_(4)hybrid was 41.5μmol·g^(−1)·h^(−1)upon exposure to monochromaticlight at 550 nm,whereas pure g‐C_(3)N_(4)showed negligible activity.This study promotes novel andenvironmentally friendly hot‐electron‐assisted S‐scheme photocatalysts for the broad‐spectrumutilization of solar light. 展开更多
关键词 graphite carbon nitride W18O49 S‐scheme Photocatalytic H2 generation Wide spectrum
下载PDF
Enhanced photochemical oxidation ability of carbon nitride by π-πstacking interactions with graphene 被引量:9
8
作者 郝强 郝思濛 +3 位作者 牛秀秀 李巽 陈代梅 丁浩 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期278-286,共9页
A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared s... A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,transmission electron microscope,and Mott-Schottky analysis.The valance band(VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO,and thus results in a strong photo-oxidation ability.The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol(2,4-DCP) and rhodamine B(RhB) under visible light irradiation(λ≥420 ran).The g-C3N4/rGO-1sample exhibits the highest photocatalytic activity,which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation,respectively.The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage,enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO. 展开更多
关键词 Graphitic carbon nitride Graphene oxide π–π stacking PHOTOCATALYST Interaction
下载PDF
Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures 被引量:6
9
作者 李宇涵 吕康乐 +2 位作者 何咏基 赵再望 黄宇 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期321-329,共9页
Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox... Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis. 展开更多
关键词 BISMUTH Surface plasmon resonance PHOTO-OXIDATION Nitric oxide Visible light Graphitic carbon nitride
下载PDF
Interfacial engineering of graphitic carbon nitride(g-C_3N_4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review 被引量:36
10
作者 Yijie Ren Deqian Zeng Wee-Jun Ong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期289-319,共31页
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic... As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future. 展开更多
关键词 Graphitic carbon nitride Metal sulfide PHOTOCATALYSIS Energy transformation Water splitting Reduction of carbon dioxide Pollutant degradation Nitrogen fixation
下载PDF
Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance 被引量:16
11
作者 Yang Li Dainan Zhang +1 位作者 Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期627-636,共10页
Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low spe... Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a remarkably promising photocatalyst for addressing environmental and energy issues;however,it exhibits only moderate photocatalytic activity because of its low specific surface area and high recombination of carriers.Preparation of crystalline g-C_(3)N_(4) by the molten salt method has proven to be an effective method to improve the photocatalytic activity.However,crystalline g-C_(3)N_(4) prepared by the conventional molten salt method exhibits a less regular morphology.Herein,highly crystalline g-C_(3)N_(4) hollow spheres(CCNHS)were successfully prepared by the molten salt method using cyanuric acid-melamine as a precursor.The higher crystallization of the CCNHS samples not only repaired the structural defects at the surface of the CCNHS samples but also established a built-in electric field between heptazine-based g-C_(3)N_(4) and triazine-based g-C_(3)N_(4).The hollow structure improved the level of light energy utilization and increased the number of active sites for photocatalytic reactions.Because of the above characteristics,the as-prepared CCNHS samples simultaneously realized photocatalytic hydrogen evolution with the degradation of the plasticizer bisphenol A.This research offers a new perspective on the structural optimization of supramolecular self-assembly. 展开更多
关键词 CRYSTALLINE Hollow spheres Graphitic carbon nitride Photocatalytic hydrogen evolution Photocatalytic degradation PLASTICIZER
下载PDF
Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs 被引量:10
12
作者 Aiwu Wang Chundong Wang +2 位作者 Li Fu Winnie Wong-Ng Yucheng Lan 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期108-128,共21页
The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of env... The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included. 展开更多
关键词 Graphitic carbon nitride(g-C3N4) CATALYSIS SENSING IMAGING LED
下载PDF
Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability 被引量:6
13
作者 Zheng Li Guizhou Gu +2 位作者 Shaozheng Hu Xiong Zou Guang Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1178-1186,共9页
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor... Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance. 展开更多
关键词 Graphitic carbon nitride Nitrogen photofixation CO-DOPING PHOTOCATALYSIS Plasma treatment
下载PDF
Band Engineering and Morphology Control of Oxygen‑Incorporated Graphitic Carbon Nitride Porous Nanosheets for Highly Efficient Photocatalytic Hydrogen Evolution 被引量:6
14
作者 Yunyan Wu Pan Xiong +7 位作者 Jianchun Wu Zengliang Huang Jingwen Sun Qinqin Liu Xiaonong Cheng Juan Yang Junwu Zhu Yazhou Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期95-106,共12页
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici... Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts. 展开更多
关键词 Graphitic carbon nitride nanosheet Hollow morphology Oxygen incorporating Multiple thermal treatment Photocatalytic hydrogen evolution
下载PDF
Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis 被引量:6
15
作者 Huiyan Piao Goeun Choi +4 位作者 Xiaoyan Jin Seong‑Ju Hwang Young Jae Song Sung‑Pyo Cho Jin‑Ho Choy 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期308-321,共14页
The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physica... The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physically well-defined monolayer of g-C_(3)N_(4)mostly due to the difficulty in reducing the layer thickness down to an atomic level.It has,therefore,remained as a challenging issue in two-dimensional(2D)chemistry and physics communities.In this study,an“atomic monolayer of g-C_(3)N_(4)with perfect two-dimensional limit”was successfully prepared by the chemically well-defined two-step routes.The atomically resolved monolayer of g-C_(3)N_(4)was also confirmed by spectroscopic and micro-scopic analyses.In addition,the experimental Cs-HRTEM image was collected,for the first time,which was in excellent agreement with the theoretically simulated;the evidence of monolayer of g-C_(3)N_(4)in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units.Compared to bulk g-C_(3)N_(4),the present g-C_(3)N_(4)monolayer showed significantly higher photocatalytic gen-eration of H2O2 and H2,and electrocatalytic oxygen reduction reaction.In addition,its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C_(3)N_(4)nanomaterials,underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C_(3)N_(4). 展开更多
关键词 Graphitic carbon nitride MONOLAYER Atomic image Electro-and photo-catalysis
下载PDF
Facile synthesis of Fe-containing graphitic carbon nitride materials and their catalytic application in direct hydroxylation of benzene to phenol 被引量:5
16
作者 Bing Xue Ye Chen +3 位作者 Yin Hong Ding-Yang Ma Jie Xu Yong-Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1263-1271,共9页
Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterize... Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterized by N2 adsorption-desorption, X-ray diffraction, thermal gravimetric, Fourier transform infrared, UV-vis diffuse reflectance, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Fe cations were anchored by nitrogen-rich g-C3N4, whereas the graphitic structures of g-C3N4 were retained after the introduction of Fe. As heterogeneous catalysts, Fe-g-C3 N4 exhibited good catalytic activity in the direct hydroxylation of benzene to phenol with H2O2, affording a maximum yield of phenol of up to 17.5%. Compared with other Fe- and V-containing g-C3N4 materials, Fe-g-C3N4 features a more convenient preparation procedure and higher catalytic productivity of phenol. 展开更多
关键词 BENZENE HYDROXYLATION Graphitic carbon nitride PHENOL
下载PDF
Construction of efficient active sites through cyano‐modified graphitic carbon nitride for photocatalytic CO_(2) reduction 被引量:4
17
作者 Fang Li Xiaoyang Yue +2 位作者 Haiping Zhou Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1608-1616,共9页
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ... The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts. 展开更多
关键词 Graphitic carbon nitride Cyano group modification Active sites Electron acceptor Porous structure Photocatalytic CO2 reduction
下载PDF
Multidimensional(0D-3D)functional nanocarbon:Promising material to strengthen the photocatalytic activity of graphitic carbon nitride 被引量:5
18
作者 Bin He Mi Feng +1 位作者 Xinyan Chen Jian Sun 《Green Energy & Environment》 SCIE CSCD 2021年第6期823-845,共23页
As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area ... As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed. 展开更多
关键词 Graphitic carbon nitride(g-C_(3)N_(4)) carbon materials Multidimension PHOTOCATALYSIS Visible light
下载PDF
Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity 被引量:5
19
作者 Qiaoran Liu Hao Tian +6 位作者 Zhenghua Dai Hongqi Sun Jian Liu Zhimin Ao Shaobin Wang Chen Han Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期154-168,共15页
Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and de... Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal. 展开更多
关键词 N-DOPING carbon sphere Graphitic carbon nitride PHOTOCATALYSIS DEGRADATION
下载PDF
Heteropolyacids-Immobilized Graphitic Carbon Nitride:Highly Efficient Photo-Oxidation of Benzyl Alcohol in the Aqueous Phase 被引量:4
20
作者 Lifu Wu Sai An Yu-Fei Song 《Engineering》 SCIE EI 2021年第1期94-102,共9页
Benzaldehyde is a highly desirable chemical due to its extensive application in medicine,chemical synthesis and food sector among others.However,its production generally involves hazardous solvents such as trifluoroto... Benzaldehyde is a highly desirable chemical due to its extensive application in medicine,chemical synthesis and food sector among others.However,its production generally involves hazardous solvents such as trifluorotoluene or acetonitrile,and its conversion,especially selectivity in the aqueous phase,is still not up to expectations.Hence,developing an environmentally benign,synthetic process for benzaldehyde production is of paramount importance.Herein,we report the preparation of a photocatalyst(PW_(12)-P-UCNS,where PW_(12)is H3PW_(12)O_(40)xH_(2)O and P-UCNS is phosphoric acid-modified unstack graphitic carbon nitride)by incorporating phosphotungstic acid on phosphoric acid-functionalised graphitic carbon nitride(g-C_(3)N_(4))nanosheets.The performance of PW_(12)-P-UCNS was tested using the benzyl alcohol photo-oxidation reaction to produce benzaldehyde in H_(2)O,at room temperature(20℃).The asprepared PW12-P-UCNS photocatalyst showed excellent photocatalytic performance with 58.3%conversion and 99.5%selectivity within 2 h.Moreover,the catalyst could be reused for at least five times without significant activity loss.Most importantly,a proposed Z-scheme mechanism of the PW_(12)-P-UCNScatalysed model reaction was revealed.We carefully investigated its transient photocurrent and electrochemical impedance,and identified superoxide radicals and photogenerated holes as the main active species through electron spin-resonance spectroscopy and scavenger experiments.Results show that the designed PW_(12)-P-UCNS photocatalyst is a highly promising candidate for benzaldehyde production through the photo-oxidation reaction in aqueous phase,under mild conditions. 展开更多
关键词 Photocatalysis HETEROPOLYACIDS Graphitic carbon nitride BENZALDEHYDE
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部