The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of...The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of 1.0 μB per unit cell and turn graphitic ZnO sheet from semiconductor into half metal for the three studied hydroxylated configurations with a half-metal gap up to 0.60 eV. The relative stability of each situation was also discussed and the structure for hydroxyl absorbed above the hexagonal ring of ZnO sheet was the most steady. The prominent electronic and magnetic properties may endow 2D ZnO sheet great opportunity in future spintronics.展开更多
he nano-graphite sheet/alumina composites were prepared in situ by a facile impregnation-reduction process.The microstructure of the composites was analyzed by X-ray diffraction (XRD),and the final phase composition...he nano-graphite sheet/alumina composites were prepared in situ by a facile impregnation-reduction process.The microstructure of the composites was analyzed by X-ray diffraction (XRD),and the final phase composition after reduction is Al2O3,metal Fe and graphite crystal.Scanning electron microscopy (SEM) images show that the particle size of Fe is about 20 nm,and the lamellae thickness of the graphite is about 30 nm.Then,the dielectric properties and conductive mechanism of the composites were investigated experimentally in the frequency range of 0.01-1.00 GHz by impedance analyzer.The results show that the real part of permittivity of composites increases with Fe3+ concentration,which is due to the increase in interfacial polarization between Fe and A12O3 and the three-dimensional network of lamellar graphite formation.Therefore,tunable microtopography and electrical parameters of nano-graphite sheet/alumina composites can be realized by changing Fe3+ concentration.展开更多
基金Funded by the National Natural Science Foundation of China(Grant No. 10874052)Foundation for the Author of NationalExcellent Doctoral Dissertation of China (Grant No. 200726)
文摘The structural, electronic and magnetic properties of the hydroxylated graphitic Zinc oxide (ZnO) sheet were studied using the density functional theory. We found that the hydroxylation can induce a magnetic moment of 1.0 μB per unit cell and turn graphitic ZnO sheet from semiconductor into half metal for the three studied hydroxylated configurations with a half-metal gap up to 0.60 eV. The relative stability of each situation was also discussed and the structure for hydroxyl absorbed above the hexagonal ring of ZnO sheet was the most steady. The prominent electronic and magnetic properties may endow 2D ZnO sheet great opportunity in future spintronics.
基金financially supported by the National Natural Science Foundation of China(Nos.50772061 and 51172131)
文摘he nano-graphite sheet/alumina composites were prepared in situ by a facile impregnation-reduction process.The microstructure of the composites was analyzed by X-ray diffraction (XRD),and the final phase composition after reduction is Al2O3,metal Fe and graphite crystal.Scanning electron microscopy (SEM) images show that the particle size of Fe is about 20 nm,and the lamellae thickness of the graphite is about 30 nm.Then,the dielectric properties and conductive mechanism of the composites were investigated experimentally in the frequency range of 0.01-1.00 GHz by impedance analyzer.The results show that the real part of permittivity of composites increases with Fe3+ concentration,which is due to the increase in interfacial polarization between Fe and A12O3 and the three-dimensional network of lamellar graphite formation.Therefore,tunable microtopography and electrical parameters of nano-graphite sheet/alumina composites can be realized by changing Fe3+ concentration.