期刊文献+
共找到1,568篇文章
< 1 2 79 >
每页显示 20 50 100
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
1
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Advances in Polymeric Carbon Nitride Photocatalysts for Enhanced CO_(2)Reduction
2
作者 Liu Bing Sun Shangcong +2 位作者 Song Ye Peng Bo Lin Wei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期1-12,共12页
Photocatalysis has emerged as a promising alternative for converting and utilizing CO_(2).Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,h... Photocatalysis has emerged as a promising alternative for converting and utilizing CO_(2).Polymeric carbon nitride(PCN),typically synthesized through the one-step thermal polycondensation of nitrogen-rich precursors,has shown considerable promise due to its adjustable band structure and inherent safety.Over the past five years,significant literature in this field has identified five primary methods for modifying PCN:morphology modulation,element doping,defect induction,co-catalyst loading,and heterojunction construction.A detailed discussion on how each modification method influences light absorption,charge separation,and surface reaction efficiencies in photocatalysis is provided.Based on these findings,several future directions for the development of PCN-based materials are proposed,such as designing tailored PCN structures for specific photocatalytic reactions and using theoretical calculations to verify and correct results from current characterization methods.Despite the challenges associated with the large-scale synthesis of PCN materials with controllable structures and satisfactory performance,this work offers valuable insights for advancing photocatalytic PCN-based systems for large-scale solar fuel production. 展开更多
关键词 carbon nitride PHOTOCATALYSIS CO_(2)reduction modification
下载PDF
Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector
3
作者 Xuexia Chen Dongwen Yang +6 位作者 Xun Yang Qing Lou Zhiyu Liu Yancheng Chen Chaofan Lv Lin Dong Chongxin Shan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期275-283,共9页
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS... Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices. 展开更多
关键词 graphitic carbon nitride high-temperature stability lateral photovoltaic effect position-sensitive detectors two-dimensional materials
下载PDF
Microwave-Assisted Confining Growth and Liquid Exfoliation of sp^(3)-Hybrid Carbon Nitride Nano/Micro-Crystals
4
作者 Chenglong Shen Qing Lou +7 位作者 Kaikai Liu Guangsong Zheng Runwei Song Jinhao Zang Xigui Yang Xing Li Lin Dong Chongxin Shan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期399-408,共10页
As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaos... As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96%in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research. 展开更多
关键词 confining growth density functional theory liquid exfoliation luminescence sp^(3)-hybrid carbon nitride
下载PDF
Synthesis,Al^(3+)/Mg^(2+) Intercalation and Structure Study of Graphite-like Carbon Nitride 被引量:1
5
作者 Xifeng Lu Hongjun Wang +1 位作者 Yi Yang Tao Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第3期245-251,共7页
Graphite-like carbon nitride (g-C3N4) was synthesized in large quantities at 300 ℃ under nitrogen by a solidstate reaction route. Furthermore, Al3+ and Mg2+ intercalation of g-CaN4 was performed by an electrochem... Graphite-like carbon nitride (g-C3N4) was synthesized in large quantities at 300 ℃ under nitrogen by a solidstate reaction route. Furthermore, Al3+ and Mg2+ intercalation of g-CaN4 was performed by an electrochemical method. The starting C3N4 materials and intercalation compounds were characterized by X-ray powder diffraction, Fourier transform infrared spectra, thermogravimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The possible structure model of intercalation compounds was proposed. The cation-π interactions and electrostatic interactions were used to explain the changes of microstructure and chemical bonds before and after intercalation. 展开更多
关键词 carbon nitride materials Solid state reactions INTERCALATION MICROSTRUCTURE
原文传递
Improved Plasmonic Hot‑Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad‑Spectrum Photocatalytic H_(2)Evolution 被引量:4
6
作者 Manyi Gao Fenyang Tian +3 位作者 Xin Zhang Zhaoyu Chen Weiwei Yang Yongsheng Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期423-435,共13页
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b... ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction. 展开更多
关键词 Polymeric carbon nitride Au nanoparticles Pt single atoms Photocatalytic H2 evolution Broad-spectrum photocatalysts
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries 被引量:2
7
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes POLYMERS Graphitic carbon nitride nanosheets Composites Room temperature All-solid-state battery
下载PDF
Carbon Nitride Quantum Dots:A Novel Fluorescent Probe for Non-Enzymatic Hydrogen Peroxide and Mercury Detection 被引量:1
8
作者 CHEN Lei LI Quan +2 位作者 WANG Xing WANG Wentai WANG Lisha 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1572-1582,共11页
The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals... The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies. 展开更多
关键词 carbon nitride quantum dots hydrogen peroxide Hg2+ fluorescence probe
下载PDF
Recent advances in graphitic carbon nitride-based photocatalysts for solar-driven hydrogen production 被引量:1
9
作者 Zhihuan Miao Guanyu Wu +7 位作者 Qi Wang Jinman Yang Zeyu Wang Pengcheng Yan Peipei Sun Yucheng Lei Zhao Mo Hui Xu 《Materials Reports(Energy)》 EI 2023年第4期19-38,共20页
Due to the abundance and sustainability of solar energy,converting it into chemical energy to obtain clean energy presents an ideal solution for addressing environmental pollution and energy shortages stemming from th... Due to the abundance and sustainability of solar energy,converting it into chemical energy to obtain clean energy presents an ideal solution for addressing environmental pollution and energy shortages stemming from the extensive combustion of fossil fuels.In recent years,hydrogen energy has emerged on the stage of history as the most promising clean energy carrier of the 21st century.Among the current methods of producing hydrogen,photocatalytic hydrogen production technology,as a zero-carbon approach to producing high calorific value and pollution-free hydrogen energy,has attracted much attention since its discovery.As the core of photocatalysis technology,semiconductor photocatalysts are always the research hotspots.Among them,graphite-phase carbon nitride(g-C_(3)N_(4)),an organic semiconductor material composed of only C and N elements,possesses physicochemical properties incomparable to those of traditional inorganic semiconductor materials,including suitable energy band positions,easy structural regulation,inexpensive raw materials and abundant reserves,simple preparation,high thermal/mechanical/chemical stability,etc.Therefore,g-C_(3)N_(4) has attracted extensive attention in the field of photocatalytic hydrogen production in the last two decades.This review comprehensively outlines the research trajectory of g-C_(3)N_(4) photocatalytic hydrogen production,encompassing development,preparation methods,advantages,and disadvantages.A concise introduction to g-C_(3)N_(4) is provided,as well as an analysis of the underlying mechanism of the photocatalytic system.Additionally,it delves into the latest techniques to enhance performance,including nanostructure design,elemental doping,and heterojunction construction.The applications of g-C_(3)N_(4) based photocatalysts in hydrogen production are surveyed,underscoring the significance of catalyst active sites and g-C_(3)N_(4) synthesis pathways.At length,concluded are insights into the challenges and opportunities presented by g-C_(3)N_(4) based photocatalysts for achieving heightened hydrogen production. 展开更多
关键词 carbon nitride PHOTOCATALYSIS Hydrogen evolution NANOSTRUCTURES DOPING HETEROJUNCTIONS
下载PDF
Construction of Fluorescence Sensing Platform on the Basis of Carbon Nitride Nanosheet for the Detection of Interferon-γ
10
作者 Xiaoqing Wen Zichun Song +3 位作者 Jiuying Cui Yan Li Qianli Tang Xianjiu Liao 《Journal of Biosciences and Medicines》 CAS 2023年第1期162-174,共13页
Purpose: Interferon-γ (INF-γ) is a cytokine that participates in the immune reaction of the body. Its level of secretion can reflect the immune response condition after the body is infected by pathogens, which is a ... Purpose: Interferon-γ (INF-γ) is a cytokine that participates in the immune reaction of the body. Its level of secretion can reflect the immune response condition after the body is infected by pathogens, which is a significant indication of clinically-related diseases. Therefore, it is of great significance in application to develop a fluorescence biosensor to inspect INF-γ with rapidness, high sensitivity and high practicability. Method: The fluorescence sensor is made on the basis of the two-dimensional nano-material namely Carbon Nitride Nanosheet (CNNS) and the Aptamer probe to identify INF-γ (Apt&reg;INF-γ). CNNS can quickly quench the Cy5 fluorescent dye modified on the Apt&reg;INF-γ probe due to the Photoinduced Electron Transfer (PET), but when the INF-γ exists, Apt&reg;INF-γ specifically identifies and combines it. The complex of Apt&reg;INF-γ and INF-γ is away from CNNS, which can effectively block the fluorescent signal of Apt?INF-γ being quenched by CNNS. Result: The sensitive detection of IFN-γ protein can be achieved through the application of CNNS/Apt&reg;INF-γ fluorescence sensing platform. In this method, the intensity of the fluorescent signal is positively correlated with the concentration of IFN-γ, of which the liner response range is 0.5 - 100 ng/mL and the limit of detection is 0.303 ng/mL. In addition, this fluorescence sensing platform has the advantages of high specificity, simple operation and low costs. It can inspect the content of IFN-γ in clinical serum samples without interference. The actual recovery rate of serum samples is 97.11% - 106.96%. Conclusion: Therefore, the CNNS/Apt&reg;INF-γ sensing platform is expected to be implemented in the actual clinical detection, also conducive to developing a universal fluorescence biosensor to inspect other target materials. 展开更多
关键词 carbon nitride Nanosheet APTAMER INTERFERON-Γ Fluorescence Sensing Analysis
下载PDF
Extraordinary Ultrahigh-Capacity and Long Cycle Life Lithium-Ion Batteries Enabled by Graphitic Carbon Nitride-Perylene Polyimide Composites
11
作者 Michael Ruby Raj Jungwon Yun +1 位作者 Dong-kyu Son Gibaek Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期199-226,共28页
Graphitic carbon nitride(g-C_(3)N_(4))is widely used in organic metal-ion batteries owing to its high porosity,facile synthesis,stability,and high-rate performance.However,pristine g-C_(3)N_(4)nanosheets exhibit poor ... Graphitic carbon nitride(g-C_(3)N_(4))is widely used in organic metal-ion batteries owing to its high porosity,facile synthesis,stability,and high-rate performance.However,pristine g-C_(3)N_(4)nanosheets exhibit poor electrical conductivity,irreversible metal-ion storage capacity,and short-term cycling owing to their high concentration of graphitic-N species.Herein,a series of 3,4:9,10-perylenetetracarboxylic diimide-coupled g-C_(3)N_(4)composite anode materials,CN-PI_(x)(x=0.2,0.5,0.75,and 1),was investigated,which exhibited an unusually high surface nitrogen content(23.19-39.92 at.%)and the highest pyridinic-N,pyrrolic-N,and graphitic-N contents reported to date.The CN-PI_(1)anode delivers an unprecedented and continuously increasing ultrahigh discharging capacity of exceeding 8400 mAh g^(-1)(1.96 mWh cm^(-2))at 100 mA g^(-1)with high specific energy density(E_(sp))of~7700 Wh kg^(-1)and the volumetric energy density(E_(v))of~14956 Wh L-1 and an excellent long-term stability(414 mAh g^(-1)or 0.579 mWh cm^(-2)at 1 A g^(-1)).Furthermore,the activation of the CN-PI_(x)electrodes contributes to their superior electrochemical performance,resulting from the fact that the Li+is not only stored in the CN-PI_(x)composites but also CN-PI_(x)activated the Li^(0)adlayer on the CN-PI_(1)-Cu heterojunction as an SEI layer to avoid the direct contact of Li^(0)phase and the electrolyte.The CN-PI_(1)full cell with LiCoO_(2)as the cathode delivers a discharge capacity of~587 mAh g^(-1)at a 1 A g^(-1)after 250 cycles with a Coulombic efficiency nearly 99%.This study provides a strategy to develop N-doped g-C_(3)N_(4)-based anode materials for realizing long-lasting energy storage devices. 展开更多
关键词 graphitic carbon nitride lithium-ion batteries organic electrode perylene polyimide semiconductor-metal heterojunction
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
12
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction
13
作者 Jinqiang Zhang Xiaoli Zhao +10 位作者 Lin Chen Shuli Li Haijun Chen Yuezhao Zhu Shuaijun Wang Yang Liu Huayang Zhang Xiaoguang Duan Mingbo Wu Shaobin Wang Hongqi Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期96-106,共11页
Van der Waals(VDW)heterojunctions in a 2D/2D contact provide the highest area for the separation and transfer of charge carriers.In this work,a top-down strategy with a gas erosion process was employed to fabricate a ... Van der Waals(VDW)heterojunctions in a 2D/2D contact provide the highest area for the separation and transfer of charge carriers.In this work,a top-down strategy with a gas erosion process was employed to fabricate a 2D/2D carbon nitride VDW heterojunction in carbon nitride(g-C_(3)N_(4))with carbon-rich carbon nitride.The created 2D semiconducting channel in the VDW structure exhibits enhanced electric field exposure and radiation absorption,which facilitates the separation of the charge carriers and their mobility.Consequently,compared with bulk g-C_(3)N_(4)and its nanosheets,the photocatalytic performance of the fabricated carbon nitride VDW heterojunction in the water splitting reaction to hydrogen is improved by 8.6 and 3.3 times,respectively,while maintaining satisfactory photo-stability.Mechanistically,the finite element method(FEM)was employed to evaluate and clarify the contributions of the formation of VDW heterojunction to enhanced photocatalysis,in agreement quantitatively with experimental ones.This study provides a new and effective strategy for the modification and more insights to performance improvement on polymeric semiconductors in photocatalysis and energy conversion. 展开更多
关键词 carbon nitride Van der Waals heterojunctions enhanced electric field exposure improved radiation absorption photocatalytic water splitting promoted dynamics of charge carriers
下载PDF
Vanadium supported on graphitic carbon nitride as a heterogeneous catalyst for the direct oxidation of benzene to phenol 被引量:10
14
作者 王成 胡丽雅 +3 位作者 王美银 任远航 岳斌 贺鹤勇 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期2003-2008,共6页
A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations w... A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate. 展开更多
关键词 carbon nitride VANADIUM Benzene hydroxylation PHENOL IMPREGNATION
下载PDF
Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts 被引量:15
15
作者 刘亚男 王瑞霞 +5 位作者 杨正坤 杜虹 姜一帆 申丛丛 梁况 徐安武 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2135-2144,共10页
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4... With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance. 展开更多
关键词 Oxygen deficient zinc oxide Graphitic carbon nitride Hybrid photocatalysts PHOTODEGRADATION Z-scheme
下载PDF
Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films 被引量:7
16
作者 王永欣 王立平 薛群基 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1372-1380,共9页
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ... Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions. 展开更多
关键词 Ti-doped graphite-like carbon film MICROSTRUCTURE tribological performance target current
下载PDF
Enhanced photochemical oxidation ability of carbon nitride by π-πstacking interactions with graphene 被引量:9
17
作者 郝强 郝思濛 +3 位作者 牛秀秀 李巽 陈代梅 丁浩 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期278-286,共9页
A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared s... A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,transmission electron microscope,and Mott-Schottky analysis.The valance band(VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO,and thus results in a strong photo-oxidation ability.The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol(2,4-DCP) and rhodamine B(RhB) under visible light irradiation(λ≥420 ran).The g-C3N4/rGO-1sample exhibits the highest photocatalytic activity,which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation,respectively.The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage,enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO. 展开更多
关键词 Graphitic carbon nitride Graphene oxide π–π stacking PHOTOCATALYST Interaction
下载PDF
Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis 被引量:9
18
作者 林珍珍 林励华 王心晨 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2089-2094,共6页
A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers fea... A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers feature nanostructures that show enhanced photocatalytic reactivity for hydrogen production under visible light irradiation. 展开更多
关键词 carbon nitride Thermal nitridation POLYMERIZATION PHOTOCATALYSIS Hydrogen evolution
下载PDF
Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures 被引量:6
19
作者 李宇涵 吕康乐 +2 位作者 何咏基 赵再望 黄宇 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期321-329,共9页
Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox... Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis. 展开更多
关键词 BISMUTH Surface plasmon resonance PHOTO-OXIDATION Nitric oxide Visible light Graphitic carbon nitride
下载PDF
High selectivity to p-chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified carbon nitride catalyst 被引量:2
20
作者 符滕 胡佩 +5 位作者 王涛 董珍 薛念华 彭路明 郭学峰 丁维平 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期2030-2035,共6页
A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocompos... A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking. 展开更多
关键词 Hydrogenationp-Chloronitrobenzene carbon nitride NickelSelectivity
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部