The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ...The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.展开更多
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro...The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)).展开更多
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS...Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.展开更多
It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selec...It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selected as carbon precursor.Then,a simple and environmentally friendly method was designed to synthesize heteroatom self-doped porous carbon materials via synchronous activation and graphitization by using K_(2)FeO_(4).Our results demonstrated that activation temperature plays an important role in porous structure,morphology,and degree of graphitization,thus affecting the performance of supercapacitance.Sargassum thunbergii-based graphitized porous carbons STGPC-2 sample(calcination temperature at 700℃)has a large specific surface area(1641.98 m^(2)g^(-1)),pore volume(0.91 cm^(3)g^(-1)),high microporosity(Vmicro=0.62 cm^(3)g1,more than 68%),and a certain degree of graphitization.In three-electrode system,The STGPC-2 electrode exhibited a high specific capacitance of 325.5 F g^(-1)at 0.5 A g^(-1)and displays high rate capability(248 F g^(-1)at 10 A g^(-1)in 6 M KOH electrolyte).The symmetric STGPC-2 supercapacitor exhibits energy density as high as 21.3 Wh kg^(-1)(at a power density of 450 W kg^(-1))and excellent long-term cycling stability(97%capacitance retention after 3000 cycles)in 1 M Na2SO4 electrolyte.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox...Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of env...The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included.展开更多
Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nan...Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.展开更多
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor...Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.展开更多
The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physica...The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physically well-defined monolayer of g-C_(3)N_(4)mostly due to the difficulty in reducing the layer thickness down to an atomic level.It has,therefore,remained as a challenging issue in two-dimensional(2D)chemistry and physics communities.In this study,an“atomic monolayer of g-C_(3)N_(4)with perfect two-dimensional limit”was successfully prepared by the chemically well-defined two-step routes.The atomically resolved monolayer of g-C_(3)N_(4)was also confirmed by spectroscopic and micro-scopic analyses.In addition,the experimental Cs-HRTEM image was collected,for the first time,which was in excellent agreement with the theoretically simulated;the evidence of monolayer of g-C_(3)N_(4)in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units.Compared to bulk g-C_(3)N_(4),the present g-C_(3)N_(4)monolayer showed significantly higher photocatalytic gen-eration of H2O2 and H2,and electrocatalytic oxygen reduction reaction.In addition,its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C_(3)N_(4)nanomaterials,underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C_(3)N_(4).展开更多
Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterize...Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterized by N2 adsorption-desorption, X-ray diffraction, thermal gravimetric, Fourier transform infrared, UV-vis diffuse reflectance, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Fe cations were anchored by nitrogen-rich g-C3N4, whereas the graphitic structures of g-C3N4 were retained after the introduction of Fe. As heterogeneous catalysts, Fe-g-C3 N4 exhibited good catalytic activity in the direct hydroxylation of benzene to phenol with H2O2, affording a maximum yield of phenol of up to 17.5%. Compared with other Fe- and V-containing g-C3N4 materials, Fe-g-C3N4 features a more convenient preparation procedure and higher catalytic productivity of phenol.展开更多
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici...Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.展开更多
As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area ...As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.展开更多
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ...The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts.展开更多
Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and de...Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal.展开更多
Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstruct...Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.展开更多
Benzaldehyde is a highly desirable chemical due to its extensive application in medicine,chemical synthesis and food sector among others.However,its production generally involves hazardous solvents such as trifluoroto...Benzaldehyde is a highly desirable chemical due to its extensive application in medicine,chemical synthesis and food sector among others.However,its production generally involves hazardous solvents such as trifluorotoluene or acetonitrile,and its conversion,especially selectivity in the aqueous phase,is still not up to expectations.Hence,developing an environmentally benign,synthetic process for benzaldehyde production is of paramount importance.Herein,we report the preparation of a photocatalyst(PW_(12)-P-UCNS,where PW_(12)is H3PW_(12)O_(40)xH_(2)O and P-UCNS is phosphoric acid-modified unstack graphitic carbon nitride)by incorporating phosphotungstic acid on phosphoric acid-functionalised graphitic carbon nitride(g-C_(3)N_(4))nanosheets.The performance of PW_(12)-P-UCNS was tested using the benzyl alcohol photo-oxidation reaction to produce benzaldehyde in H_(2)O,at room temperature(20℃).The asprepared PW12-P-UCNS photocatalyst showed excellent photocatalytic performance with 58.3%conversion and 99.5%selectivity within 2 h.Moreover,the catalyst could be reused for at least five times without significant activity loss.Most importantly,a proposed Z-scheme mechanism of the PW_(12)-P-UCNScatalysed model reaction was revealed.We carefully investigated its transient photocurrent and electrochemical impedance,and identified superoxide radicals and photogenerated holes as the main active species through electron spin-resonance spectroscopy and scavenger experiments.Results show that the designed PW_(12)-P-UCNS photocatalyst is a highly promising candidate for benzaldehyde production through the photo-oxidation reaction in aqueous phase,under mild conditions.展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxyge...Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).展开更多
Photoelectrochemical(PEC)water splitting is recognized as a sustainable strategy for hydrogen generation due to its abundant hydrogen source,utilization of inexhaustible solar energy,high-purity product,and environmen...Photoelectrochemical(PEC)water splitting is recognized as a sustainable strategy for hydrogen generation due to its abundant hydrogen source,utilization of inexhaustible solar energy,high-purity product,and environment-friendly process.To actualize a practical PEC water splitting,it is paramount to develop efficient,stable,safe,and low-cost photoelectrode materials.Recently,graphitic carbon nitride(g-C3N4)has aroused a great interest in the new generation photoelectrode materials because of its unique features,such as suitable band structure for water splitting,a certain range of visible light absorption,nontoxicity,and good stability.Some inherent defects of g-C3N4,however,seriously impair further improvement on PEC performance,including low electronic conductivity,high recombination rate of photogenerated charges,and limited visible light absorption at long wavelength range.Construction of g-C3N4-based nanosized heteroarrays as photoelectrodes has been regarded as a promising strategy to circumvent these inherent limitations and achieve the high-performance PEC water splitting due to the accelerated exciton separation and the reduced combination of photogenerated electrons/holes.Herein,we summarize in detail the latest progress of g-C3N4-based nanosized heteroarrays in PEC water-splitting photoelectrodes.Firstly,the unique advantages of this type of photoelectrodes,including the highly ordered nanoarray architectures and the heterojunctions,are highlighted.Then,different g-C3N4-based nanosized heteroarrays are comprehensively discussed,in terms of their fabrication methods,PEC capacities,and mechanisms,etc.To conclude,the key challenges and possible solutions for future development on g-C3N4-based nanosized heteroarray photoelectrodes are discussed.展开更多
文摘The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.
基金the National Natural Science Foundation of China(No.52004179)the Natural Nat-ural Science Foundation of Guangxi Province,China(No.2020GXNSFAA159015)Shanxi Water and Wood New Carbon Materials Technology Co.,Ltd.,China,and Shanxi Wote Haimer New Materials Technology Co.,Ltd,China.
文摘The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)).
基金financially supported by the National Natural Science Foundation of China(No.61804136,U1804155,11974317,62027816,12074348,and U2004168)Henan Science Fund for Distinguished Young Scholars(No.212300410020)+2 种基金Natural Science Foundation of Henan Province(No.212300410020 and 212300410078)Key Project of Henan Higher Education(No.21A140001)the Zhengzhou University Physics Discipline Improvement Program and China Postdoctoral Science Foundation(No.2018M630829 and 2019 T120630)
文摘Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.
基金supported by the Natural Science Foundation of Shandong Province(ZR2020MB075)the National Natural Science Foundation of China(22074079).
文摘It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selected as carbon precursor.Then,a simple and environmentally friendly method was designed to synthesize heteroatom self-doped porous carbon materials via synchronous activation and graphitization by using K_(2)FeO_(4).Our results demonstrated that activation temperature plays an important role in porous structure,morphology,and degree of graphitization,thus affecting the performance of supercapacitance.Sargassum thunbergii-based graphitized porous carbons STGPC-2 sample(calcination temperature at 700℃)has a large specific surface area(1641.98 m^(2)g^(-1)),pore volume(0.91 cm^(3)g^(-1)),high microporosity(Vmicro=0.62 cm^(3)g1,more than 68%),and a certain degree of graphitization.In three-electrode system,The STGPC-2 electrode exhibited a high specific capacitance of 325.5 F g^(-1)at 0.5 A g^(-1)and displays high rate capability(248 F g^(-1)at 10 A g^(-1)in 6 M KOH electrolyte).The symmetric STGPC-2 supercapacitor exhibits energy density as high as 21.3 Wh kg^(-1)(at a power density of 450 W kg^(-1))and excellent long-term cycling stability(97%capacitance retention after 3000 cycles)in 1 M Na2SO4 electrolyte.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.
基金supported by the National Program on Key Basic Research Project (2016YFA0203000)the Early Career Scheme (ECS 809813) from the Research Grant Council, Hong Kong SAR Government+2 种基金the Croucher Foundation Visitorship for PRC Scholars 2015/16 at The Education University of Hong Kongthe National Natural Science Foundation of China (51672312, 21373275)the Program for New Century Excellent Talents in University (NCET-12-0668)~~
文摘Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
文摘The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included.
文摘Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.
基金supported by the National Natural Science Foundation of China(41701364)the Liaoning Doctoral Priming Fund Project(201601333,20170520109)+2 种基金the Basic Scientific Research in Colleges and Universities in Heilongjiang Province(KJCXZD201715)the Harbin Science and Technology Bureau Project(2017RAQXJ145)supported by Super Computing Center of Dalian University of Technology~~
文摘Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A1A01072161)and under the framework of the International Cooperation Program managed by NRF(No.2017K2A9A2A10013104)supported by the NRF grant funded by the Korea government(MSIP)(No.NRF-2020R1A2C3008671).
文摘The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physically well-defined monolayer of g-C_(3)N_(4)mostly due to the difficulty in reducing the layer thickness down to an atomic level.It has,therefore,remained as a challenging issue in two-dimensional(2D)chemistry and physics communities.In this study,an“atomic monolayer of g-C_(3)N_(4)with perfect two-dimensional limit”was successfully prepared by the chemically well-defined two-step routes.The atomically resolved monolayer of g-C_(3)N_(4)was also confirmed by spectroscopic and micro-scopic analyses.In addition,the experimental Cs-HRTEM image was collected,for the first time,which was in excellent agreement with the theoretically simulated;the evidence of monolayer of g-C_(3)N_(4)in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units.Compared to bulk g-C_(3)N_(4),the present g-C_(3)N_(4)monolayer showed significantly higher photocatalytic gen-eration of H2O2 and H2,and electrocatalytic oxygen reduction reaction.In addition,its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C_(3)N_(4)nanomaterials,underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C_(3)N_(4).
基金supported by the National Natural Science Foundation of China (21673024)Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2016-06-28)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2017-K28)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B145)~~
文摘Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterized by N2 adsorption-desorption, X-ray diffraction, thermal gravimetric, Fourier transform infrared, UV-vis diffuse reflectance, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Fe cations were anchored by nitrogen-rich g-C3N4, whereas the graphitic structures of g-C3N4 were retained after the introduction of Fe. As heterogeneous catalysts, Fe-g-C3 N4 exhibited good catalytic activity in the direct hydroxylation of benzene to phenol with H2O2, affording a maximum yield of phenol of up to 17.5%. Compared with other Fe- and V-containing g-C3N4 materials, Fe-g-C3N4 features a more convenient preparation procedure and higher catalytic productivity of phenol.
基金This work was supported by the National Science Foundation of China(51772152,51702129,51572114,51972150,21908110,and 51902161)Fundamental Research Funds for the Central Universities(30919011269,30919011110,and 1191030558)+3 种基金Y.W.thanks the Key University Science Research Project of Jiangsu province(16KJB430009)Y.Z.thanks for the support from the Postdoctoral Science Foundation(2018M630527)China Scholarship Council(201708320150)J.S.thanks the Natural Science Foundation of Jiangsu Province(BK20190479,1192261031693).
文摘Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.
基金supported by the Startup Foundation of China(3160011181808)。
文摘As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.
文摘The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts.
基金the partial support from the Australian Research Council Discovery Project(No:DP170104264)
文摘Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal.
文摘Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.
基金This research was supported by the National Nature Science Foundation of China(21625101,21521005,and 21808011)the National Key Research and Development Program of China(2017YFB0307303)+1 种基金Beijing Natural Science Foundation(2202039)the Fundamental Research Funds for the Central Universities(XK1802-6,XK1902,and 12060093063).
文摘Benzaldehyde is a highly desirable chemical due to its extensive application in medicine,chemical synthesis and food sector among others.However,its production generally involves hazardous solvents such as trifluorotoluene or acetonitrile,and its conversion,especially selectivity in the aqueous phase,is still not up to expectations.Hence,developing an environmentally benign,synthetic process for benzaldehyde production is of paramount importance.Herein,we report the preparation of a photocatalyst(PW_(12)-P-UCNS,where PW_(12)is H3PW_(12)O_(40)xH_(2)O and P-UCNS is phosphoric acid-modified unstack graphitic carbon nitride)by incorporating phosphotungstic acid on phosphoric acid-functionalised graphitic carbon nitride(g-C_(3)N_(4))nanosheets.The performance of PW_(12)-P-UCNS was tested using the benzyl alcohol photo-oxidation reaction to produce benzaldehyde in H_(2)O,at room temperature(20℃).The asprepared PW12-P-UCNS photocatalyst showed excellent photocatalytic performance with 58.3%conversion and 99.5%selectivity within 2 h.Moreover,the catalyst could be reused for at least five times without significant activity loss.Most importantly,a proposed Z-scheme mechanism of the PW_(12)-P-UCNScatalysed model reaction was revealed.We carefully investigated its transient photocurrent and electrochemical impedance,and identified superoxide radicals and photogenerated holes as the main active species through electron spin-resonance spectroscopy and scavenger experiments.Results show that the designed PW_(12)-P-UCNS photocatalyst is a highly promising candidate for benzaldehyde production through the photo-oxidation reaction in aqueous phase,under mild conditions.
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).
基金This study was supported by Developed and Applied Funding of Tianjin Normal University(135202XK1702)Program for Innovative Research in the University of Tianjin(TD13-5077)+1 种基金National Natural Science Foundation of China(Number 21905202)Australian Research Council(ARC)through Discovery Early Career Researcher Awards(DECRA,DE170100871).
文摘Photoelectrochemical(PEC)water splitting is recognized as a sustainable strategy for hydrogen generation due to its abundant hydrogen source,utilization of inexhaustible solar energy,high-purity product,and environment-friendly process.To actualize a practical PEC water splitting,it is paramount to develop efficient,stable,safe,and low-cost photoelectrode materials.Recently,graphitic carbon nitride(g-C3N4)has aroused a great interest in the new generation photoelectrode materials because of its unique features,such as suitable band structure for water splitting,a certain range of visible light absorption,nontoxicity,and good stability.Some inherent defects of g-C3N4,however,seriously impair further improvement on PEC performance,including low electronic conductivity,high recombination rate of photogenerated charges,and limited visible light absorption at long wavelength range.Construction of g-C3N4-based nanosized heteroarrays as photoelectrodes has been regarded as a promising strategy to circumvent these inherent limitations and achieve the high-performance PEC water splitting due to the accelerated exciton separation and the reduced combination of photogenerated electrons/holes.Herein,we summarize in detail the latest progress of g-C3N4-based nanosized heteroarrays in PEC water-splitting photoelectrodes.Firstly,the unique advantages of this type of photoelectrodes,including the highly ordered nanoarray architectures and the heterojunctions,are highlighted.Then,different g-C3N4-based nanosized heteroarrays are comprehensively discussed,in terms of their fabrication methods,PEC capacities,and mechanisms,etc.To conclude,the key challenges and possible solutions for future development on g-C3N4-based nanosized heteroarray photoelectrodes are discussed.