It is a key challenge for soft grasping devices to stably grasp unstructured objects with multi-size and multi-shape. The conventional single-function grippers have some limitations in grasping the above kinds of obje...It is a key challenge for soft grasping devices to stably grasp unstructured objects with multi-size and multi-shape. The conventional single-function grippers have some limitations in grasping the above kinds of objects. This work proposes a modular four-modal soft grasping device(MFSGD), which consists of soft fingers, suction cups, soft wrapper, and other structures. It can perform a variety of grasping modes such as bending grasping mode, wrapping grasping mode, end liftingsucking mode, and side fixed-sucking mode. It may be one of the devices with the most grasping modes at present. Moreover, the device adopts a fully modular design with different structures connected by magnets. It is not only convenient to disassemble or assemble, so as to solve the mutual interference of different modal structures problem during grasping, but also simplifies the fabrication of the multi-modal grasping device. In addition, this work matches the suitable grasping modes for objects of different shapes and sizes, and obtains the relative characteristics of the MFSGD. The proposed device can improve the ability of the grasping robots, and is expected to play an important role in economic and industrial fields.展开更多
In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft grip...In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft gripper structures and a soft bionic bracket structure.We adopt the local thin-walled design in the soft gripper structures.This design improves the grippers’bending efficiency,and imitate human finger’s segmental bending function.In addition,this work also proposes a pneumatic soft bionic bracket structure,which not only can fix grippers,but also can automatically adjust the grasping space by imitating the human adjacent fingers’opening and closing movements.Due to the above advantages,the SBGD can grasp larger or smaller objects than the regular grasping devices.Particularly,to grasp small objects reliably,we further present a new Pinching Grasping(PG)method.The great performance of the fully SBGD is verified by experiments.This work will promote innovative development of the soft bionic grasping robots,and greatly meet the applications of dexterous grasping multi-size and multi-shape objects.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Grant Nos. CUG170610 and CUGGC02)。
文摘It is a key challenge for soft grasping devices to stably grasp unstructured objects with multi-size and multi-shape. The conventional single-function grippers have some limitations in grasping the above kinds of objects. This work proposes a modular four-modal soft grasping device(MFSGD), which consists of soft fingers, suction cups, soft wrapper, and other structures. It can perform a variety of grasping modes such as bending grasping mode, wrapping grasping mode, end liftingsucking mode, and side fixed-sucking mode. It may be one of the devices with the most grasping modes at present. Moreover, the device adopts a fully modular design with different structures connected by magnets. It is not only convenient to disassemble or assemble, so as to solve the mutual interference of different modal structures problem during grasping, but also simplifies the fabrication of the multi-modal grasping device. In addition, this work matches the suitable grasping modes for objects of different shapes and sizes, and obtains the relative characteristics of the MFSGD. The proposed device can improve the ability of the grasping robots, and is expected to play an important role in economic and industrial fields.
基金This work was funded by the National Natural Science Foundation of Chinaunder Grant 62073305the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Nos.CUG170610 and CUGGC02).
文摘In this paper,we propose a fully Soft Bionic Grasping Device(SBGD),which has advantages in automatically adjusting the grasping range,variable stiffness,and controllable bending shape.This device consists of soft gripper structures and a soft bionic bracket structure.We adopt the local thin-walled design in the soft gripper structures.This design improves the grippers’bending efficiency,and imitate human finger’s segmental bending function.In addition,this work also proposes a pneumatic soft bionic bracket structure,which not only can fix grippers,but also can automatically adjust the grasping space by imitating the human adjacent fingers’opening and closing movements.Due to the above advantages,the SBGD can grasp larger or smaller objects than the regular grasping devices.Particularly,to grasp small objects reliably,we further present a new Pinching Grasping(PG)method.The great performance of the fully SBGD is verified by experiments.This work will promote innovative development of the soft bionic grasping robots,and greatly meet the applications of dexterous grasping multi-size and multi-shape objects.