A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler.Its historical operating data were used to retrieve sensitive p...A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler.Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis.Then,the 15 most sensitive parameters with specified time spans were selected as neural network inputs.An external testing set was introduced to objectively evaluate the neural network prediction capability.The results show that,compared with the traditional prediction method,the time-span input framework model can achieve better prediction performance and has a greater capability for generalization.The maximum average prediction error can be controlled below 0.2°C and 1.5°C in the next 60 s and 5 min,respectively.In addition,setting a reasonable terminal training threshold can effectively avoid overfitting.An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters;the former affects the overall prediction and the latter affects the long-term prediction performance.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2018YFC1901300)the Research Project of Multi-data Fusion and Strategy of Intelligent Control and Optimization for Large Scale Industrial Combustion System,China。
文摘A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler.Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis.Then,the 15 most sensitive parameters with specified time spans were selected as neural network inputs.An external testing set was introduced to objectively evaluate the neural network prediction capability.The results show that,compared with the traditional prediction method,the time-span input framework model can achieve better prediction performance and has a greater capability for generalization.The maximum average prediction error can be controlled below 0.2°C and 1.5°C in the next 60 s and 5 min,respectively.In addition,setting a reasonable terminal training threshold can effectively avoid overfitting.An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters;the former affects the overall prediction and the latter affects the long-term prediction performance.