变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度...变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。展开更多
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stres...The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.展开更多
The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial...The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength λB shift a little towards short wavelengths and increase λB -λ1 (the wavelength spacing between the main peak with Bragg resonance wavelength λB and the first side peak with wavelength λ1) and the coupling coefficient κ of Bragg resonance. Moreover, when the ratio of air hole diameter (d) to pitch (∧), d/∧, is small, IAHs can suppress the cladding mode resonance. When d/∧ is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By comparing the transmission spectral characteristics of PCF-based fibre Bragg grating (FBG) with IAHs with those without IAHs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes.展开更多
文摘变压器作为电力系统的关键设备,其绕组松动状态的识别对电网的稳定运行具有重要意义。针对传统监测方法环境干扰较大、应用复杂等问题,提出了使用两类不同的布拉格光纤光栅(Fiber bragg grating,FBG)传感器采集变压器绕组关键测点温度与应变信号,经快速解耦与自适应噪声完备集合经验模态分解后(Fast decoupling and complete ensemble empirical mode decomposition with adaptive noise,DECE),提取关键参数并进行主元分析(Principal component analysis,PCA)。对降维后的特征采用基于黑洞优化的支持向量机(Support vector machine based on black hole optimization,BHOSVM)进行分类,实现对变压器绕组径向松动状态的监测与定位。诊断结果表明,所提诊断方法对变压器绕组径向松动状态的识别准确率达到96.8%。
基金the National Natural Science Foundation of China (10772117, 10572089)
文摘The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.
基金supported by the National Natural Science Foundation of China (Grant No 10874145)the Yanshan University Doctoral Foundation (Grant No B153)
文摘The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength λB shift a little towards short wavelengths and increase λB -λ1 (the wavelength spacing between the main peak with Bragg resonance wavelength λB and the first side peak with wavelength λ1) and the coupling coefficient κ of Bragg resonance. Moreover, when the ratio of air hole diameter (d) to pitch (∧), d/∧, is small, IAHs can suppress the cladding mode resonance. When d/∧ is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By comparing the transmission spectral characteristics of PCF-based fibre Bragg grating (FBG) with IAHs with those without IAHs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes.