期刊文献+
共找到1,084篇文章
< 1 2 55 >
每页显示 20 50 100
Active Faulting Pattern,Present-day Tectonic Stress Field and Block Kinematics in the East Tibetan Plateau 被引量:34
1
作者 ZHANG Yueqiao DONG Shuwen YANG Nong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期694-712,共19页
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region... This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed. 展开更多
关键词 Longmenshan fault belt active faulting pattern active tectonic stress field extrusion tectonics Wenchuan earthquake East Tibetan Plateau
下载PDF
Simulation of Paleotectonic Stress Fields and Distribution Prediction of Tectonic Fractures at the Hudi Coal Mine, Qinshui Basin 被引量:9
2
作者 FANG Huihuang SANG Shuxun +2 位作者 WANG Jilin LIU Shiqi JU Wei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第6期2007-2023,共17页
Study on tectonic fractures based on the inversion of tectonic stress fields is an effective method. In this study, a geological model was set up based on geological data from the Hudi Coal Mine, Qinshui Basin, a mech... Study on tectonic fractures based on the inversion of tectonic stress fields is an effective method. In this study, a geological model was set up based on geological data from the Hudi Coal Mine, Qinshui Basin, a mechanical model was established under the condition of rock mechanics and geostress, and the finite element method was used to simulate the paleotectonic stress field. Based on the Griffith and Mohr-Coulomb criterion, the distribution of tectonic fractures in the Shanxi Formation during the Indosinian, Yanshanian, and Himalayan period can be predicted with the index of comprehensive rupture rate. The results show that the acting force of the Pacific Plate and the India Plate to the North China Plate formed the direction of principal stress is N-S, NW - SE, and NE - SW, respectively, in different periods in the study area. Changes in the direction and strength of the acting force led to the regional gradients of tectonic stress magnitude, which resulted in an asymmetrical distribution state of the stress conditions in different periods. It is suggested that the low-stress areas are mainly located in the fault zones and extend along the direction of the fault zones. Furthermore, the high-stress areas are located in the junction of fold belts and the binding site of multiple folds. The development of tectonic fractures was affected by the distribution of stress intensity and the tectonic position of folds and faults, which resulted in some developed areas with level I and II. There are obvious differences in the development of tectonic fractures in the fold and fault zones and the anticline and syncline structure at the same fold zones. The tectonic fractures of the Shanxi Formation during the Himalayan period are more developed than those during the Indosinian and Yanshanian period due to the superposition of the late tectonic movement to the early tectonic movement and the differences in the magnitude and direction of stress intensity. 展开更多
关键词 tectonic fracture paleotectonic stress field comprehensive rupture rate numerical simulation Hudi Coal Mine Qinshui Basin
下载PDF
The Relationship between Fractures and Tectonic Stress Field in the Extra Low-Permeability Sandstone Reservoir at the South of Western Sichuan Depression 被引量:13
3
作者 曾联波 漆家福 李跃纲 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期223-231,共9页
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper... The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure. 展开更多
关键词 fracture tectonic stress field extra low-permeability reservoir south of western Sichuan depression
下载PDF
Evolution characteristics of Quaternary tectonic stress field in the north and east margin of Qinghai-Xizang plateau 被引量:6
4
作者 谢富仁 张世民 +2 位作者 窦素芹 崔效锋 舒塞兵 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第5期550-561,共12页
By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-... By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet)plateau since Miocenc. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by amaximum principal compression which was coming from the collision of india Plate continued to the boundaryof the plateau. and was basically of reverse faulting type. Since the late period of early Pleistocene, Pleistocene continuedto push northward and the compressional deformation of the plateau interior increased continuously, meanwhile,N W-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block offoe plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust tostrike-slip. -The contemporary tectonic stress field was formed from the late period of early Pleistocene and continuedto present. The direction of maximum principal compressional stress rotated clockwise with respect to the previoustectonic stress held. the stress field was mainly of strike-slip type. 展开更多
关键词 Qinghai-Xizang plateau tectonic stress field crustal deformation
下载PDF
Modern tectonic stress field in the Chinese mainland inverted from focal mechanism solutions 被引量:4
5
作者 杜兴信 邵辉成 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第4期390-397,共8页
The inversion of modern tectonic stress field in China is made by regions on the basis of focal mechanism data inthe period of 1920-1996. Results of the inversion show that the maximum principal compressive stress σ1... The inversion of modern tectonic stress field in China is made by regions on the basis of focal mechanism data inthe period of 1920-1996. Results of the inversion show that the maximum principal compressive stress σ1 axisstrikes nearly north-south direction in the Tibet Plateau and western Chin4 east-west direction in North China Incentral China, its strikes show a radiate pattern, i.e., north-north east in north part, east-west in central part andnorth-north west in south part. The σ1 axes are often perpendicular to the minimum principal stress σ3 axes, exceptwestern China where the σ1 axes are oblique to the σ3 axes with an acute angle. R is defined by (σ2-σ1)/(σ3-σ1),has the higher values (0.60-0.90) in north part of central China and quickly changes into the lower values(0. 10-0.30) in the Tibet Plateau. Both of the observed and inverted fault planes have strikes varying with locations.Combining stress directions and R value, the stress configuration is divided into 7 groups. Most of the groups showstrike-slip faulting with intermediate R values, which occupies North China and the eastern part of China as well asinner Tibet Plateau. A few of them show reverse faulting with higher R values within western pod of China and thenorth edge of the Tibet Plateau. Normal faulting occurred on the south edge of the Tibet Plateau with smaller Rval nes. 展开更多
关键词 focal mechanism mean stress field stress direction tectonic movement character
下载PDF
The seismicity and tectonic stress field characteristics of the Longmenshan fault zone before the Wenchuan M_S8.0 earthquake 被引量:3
6
作者 Zhiwei Zhang Wanzheng Cheng +1 位作者 Xiang Ruan Peng Wu 《Earthquake Science》 CSCD 2009年第2期119-128,共10页
The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile s... The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake. 展开更多
关键词 Wenchuan earthquake Longmenshan fault zone focal mechanism solution tectonic stress field
下载PDF
Numerical calculations of tectonic stress field of Chinese mainland and its neighboring regions and their applications to explanation of seismic activity 被引量:2
7
作者 焦明若 张国民 +1 位作者 车时 刘杰 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第2期137-147,共11页
This paper made a numerical simulation to the basic tectonic stress field of Chinese mainland and its neighboringregion using the visco-elasticity finite element model and the new published displacement rate result. M... This paper made a numerical simulation to the basic tectonic stress field of Chinese mainland and its neighboringregion using the visco-elasticity finite element model and the new published displacement rate result. Main contents include the simulation of maximum shear stress and its varying rate, the maximum shear strain and its varyingrate, the shear strain energy density and its varying rate. In view of the high inhomogeneous distribution characterof seismicity in space and time in Chinese mainland and its neighboring area, the normalized background energyvalue was given by means of normalized treatment to the earthquake energy release in the eastern and westernparts of Chinese mainland. And the comparison of the simulation result with the actual seismicity was made. Thefesults show that the simulation values can explain well the earthquake distribution character of Chinese mainlandand its neighboring area. 展开更多
关键词 tectonic stress field numerical simulation seismic activity Chinese mainland
下载PDF
Numerical modeling of tectonic stress field and fault activity in North China 被引量:2
8
作者 Li Yan Chen Lianwang Zhan Zimin 《Geodesy and Geodynamics》 2012年第1期63-70,共8页
On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress fie... On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are: 1 ) Maximum principal tensile stress is about 3 -9 kPaa-1 and its azimuth lie in NNW-SSE. 2) Maximum principal compressive stress is about 1 - 6 kPaa-1 and its azimuth lie in NEE-SWW. 3 ) Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4) Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 )Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the high- est (6 kPaa - 1 ) , Anshan-Liaodongwan segment is the second (5 kPaa - l ) , and others are relatively lower ( 3 - 4 kPaa-1 ). 展开更多
关键词 North China tectonic stress field numerical modeling annual change characteristics active fault
下载PDF
Ambient tectonic shear stress field in Southern California and seismic hazard regions 被引量:1
9
作者 陈培善 肖磊 +1 位作者 白彤霞 成瑾 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第2期20-29,共10页
ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for i... ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for intermediate and small earthquakes occurred in Chinese mainland and Southern California have been calculated by use of these equations. The results demonstrate that the level and distribution of τ0 are closely related to the location where large earthquakes will occur, i.e. the region with higher level of τ0 will be prone to occur large earthquakes and the region with lower level will usually occur small earthquakes. According to the spatial distribution of τ0 , the seismic hazard regions or the potential earthquake source regions can in some degree be determined. According to the variation of τ0 with time, the large earthquake occurrence time can be roughly estimated. According to the distribution of τ0 in Southern California and variation with time, three high stress level regions are determined, one (Goldfield area) of them is the present seismic hazard region. 展开更多
关键词 tectonic ambient shear stress field Southern California seismic hazard region potential earthquake source region
下载PDF
The characteristics of tectonic stress field about strike slip earthquake-generating structure in the Chinese mainland 被引量:1
10
作者 环文林 汪素云 宋昭仪 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第4期567-575,共9页
This paper is one of the series papers about the study on strike-slip earthquake-generating structure in the Chinese mainland. In the first part of this paper, based on the large amount of data from large earthquake i... This paper is one of the series papers about the study on strike-slip earthquake-generating structure in the Chinese mainland. In the first part of this paper, based on the large amount of data from large earthquake investigation and the latest results of focal mechanism, the earthquake-generating structure in the Chinese mainland interior and its neighbouring region is discussed. It is concluded that the absolutely predominated earthquake, not only in number, but also in intensity, as well as in distributing area, is strike slip earthquake, and it is further stressed that the study on the strike slip earthquake-generating structure is significant for seismic risk analysis. In the second part, the characteristics of tectonic stress field about strike slip earthquake-generating structure and the compiled distribution outline of strike slip earthquake-generating fault, normal fault, and thrust fault in the Chinese mainland interior and its neighbouring region, in the light of stress characteristics of fault plane solutions, are also discussed. 展开更多
关键词 earthquake generating structure tectonic stress field strike slip earthquake
下载PDF
“Giant pressure shadow” structure and ore-finding method of tectonic stress field in the Tongchang Cu-Au polymetallic orefield,Shaanxi,China:Ⅱ.Dynamics of tectonic ore-forming processes and prognosis of concealed ores 被引量:5
11
作者 HAN Runsheng WANG Lei +2 位作者 MA Deyun GU Xiaochun FAN Zhuguo 《Chinese Journal Of Geochemistry》 EI CAS 2010年第4期455-463,共9页
The Tongchang orefield is located in the central part of the Mianxian-Lueyang-Yangpingguan area that is celebrated as a 'gold triangle' area,at the juncture of the latitudinal tectonic zone of South Qinling,th... The Tongchang orefield is located in the central part of the Mianxian-Lueyang-Yangpingguan area that is celebrated as a 'gold triangle' area,at the juncture of the latitudinal tectonic zone of South Qinling,the Longmenshan Cathysian tectonic zone and the Sichuan-Yunnan longitudinal tectonic zone,where there are distributed Cu-Au polymetallic ore deposits(occurrences) including the Tongchang,Chenjiaba,Qinjiabian,Hongtushi,Yinshangou and Xiakouyi ore deposits(mineralization).Based on the "giant pressure shadow" structure put forward and demonstrated by numerical modeling of the tectonic stress field and the static photoelasticity experiments on the basis of tectonic ore-controlling laws in the orefield,tectonic metallogenesis driven by orefield tectonic stress has been discussed in terms of its geological setting,orefield geomechanics,and tectonic stress field.It is thought that the dynamic evolution model of the tectonic stress field controls the whole process of formation of the polymetallic ore deposits(mineralization) in the orefield,as well as the deformation field.As a result,it controls the emplacement of rockbodies and the transformation of ore-source bodies,and provides both the channel-ways for ore-forming fluids and ore-hosting space.Furthermore,it controls the migration potential field of fluids and,thereafter,its flow direction,rate and volume;the tectonic stress field also controls the energy field and hence controls the position of occurrence of ore deposits and their scale.The method of tectonic stress field has been applied to ore prognosis in the orefield.The rules of magmatic emplacement and metallogenic fluid migrating and concentrating under the control of the structural stress field were expounded,hence providing the theoretical basis for the prognosis of concealed ores.In addition,a number of important target areas have been defined. 展开更多
关键词 铜金多金属矿床 构造应力场 多金属矿田 成矿过程 找矿方法 影子 压力 结构
下载PDF
Research of the Modern Tectonic Stress Field and Seismicity Characteristics on the Northeastern Side of Pamirs 被引量:2
12
作者 Gao Guoying and Wen HepingSeismologieal Bureau of Xinjiang Uygur Autonomous Region, Urumqi 830011 , China 《Earthquake Research in China》 2000年第4期57-65,共9页
According to the earthquake focal mechanism solutions of 55 moderately strong earthquakes onthe northeastern side of Pamirs,the spatial and temporal distribution of earthquakes ith M_s≥6.0 since this century and the ... According to the earthquake focal mechanism solutions of 55 moderately strong earthquakes onthe northeastern side of Pamirs,the spatial and temporal distribution of earthquakes ith M_s≥6.0 since this century and the characteristics of hypocenter depth distribution of earthquakeswith M_s≥3.0 since 1980 in this region,the article discusses the relation between regional tee-tonic stress fields and strong earthquake activity.The result shows that the hypocenter disloca-tion is mostly strike-dip,partly dip-slip,and the direction of the principal compressional stressis nearly NS.The distributive characteristics of strong shock activity is obvious,with the gen-eral trend that the west is strong and the east is weak,which can be divided into three imephases,and each with relative principal active region The depth near Pamirs aren reaches200km,shallower obviously when externding to NE,less than or equal to 40km near the Kalpinblock,and the article discusses the result. 展开更多
关键词 tectonic stress field SEISMICITY Principal compressional stress
下载PDF
The Spatial and Temporal Variation of Modern Tectonic Stress Field in North China before and after the 1976 Tangshan Earthquake 被引量:3
13
作者 Cui Xiaofeng and Xie FurenInstitute of Crustal Dynamics, CSB, Beijing 100085, China 《Earthquake Research in China》 2002年第1期71-80,共10页
By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results ind... By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results indicate that the tectonic stress field in the research region is clearly variational in space and time: (1) The middling principal stress axis σ 2 is basically vertical. The maximum and minimum principal stress axes σ 1 and σ 2 are nearly horizontal, but the azimuths of σ 1 and σ 3 are inconsistent in different districts and periods. (2) Before the Tangshan earthquake in 1976, the three principal stress axes are uniform. The azimuth of maximum principal stress axis σ 1 is 68° (striking in a NEE-SWW direction). (3) After the Tangshan earthquake, the maximum principal stress axis σ 1 and minimum principal stress axis σ 3 have variations in different districts. In the northern area of North China and on the eastern side of the Tancheng-Lujiang fault zone, the maximum principal stress axis σ 1 is also striking in a NEE-SWW direction. Its azimuth is 68°. It is the same as that before the Tangshan earthquake. In the southern area of North China, the maximum principal stress axis σ 1 is striking in a E-W direction and its azimuth is 87°. 展开更多
关键词 Modern tectonic stress field Focal mechanism solution North China Inversion analysis
下载PDF
Present Tectonic Stress Field in the Capital Region of China Inverted from Focal Mechanisms of Small and Strong Earthquakes 被引量:1
14
作者 Huang Jichao Wan Yongge 《Earthquake Research in China》 CSCD 2015年第4期485-497,共13页
A dense seismic network was installed in the capital region of China in recent years,which makes it possible to resolve the focal mechanisms of small earthquakes. We gathered large earthquake focal mechanisms from the... A dense seismic network was installed in the capital region of China in recent years,which makes it possible to resolve the focal mechanisms of small earthquakes. We gathered large earthquake focal mechanisms from the last fifty years and moderate or small earthquake focal mechanisms from between 2002 and 2004,and calculated the present tectonic stress field of the capital region by the grid search method, which weighs different sized earthquakes and can improve the accuracy of the stress field inversion. The analysis of inversion results of different sub-regions shows that the azinuth of the maximum principal compressive stress axis is NE43°- 86° in the Beijing-Zhangjiakou-Datong area,NE38°-86° in the Tangshan area,and NE79°- 81° in the Xingtai area. Inversion results of this paper are similar to previous results,which proves the correctness of the approach. As revealed by the results,the stress field of the capital region is characterized by overall consistency and sub-regional differences. This study provides reference for earthquake mechanism explanation and geodynamics research. 展开更多
关键词 Focal mechanism Grid search tectonic stress field The capital region of China
下载PDF
Characteristics of the Mesozoic and Cenozoic Tectonic Stress Fields of the Urumqi-Usu Region, Xinjiang
15
作者 Tao Mingxin Lanzhou Institute of Geology, Academia Sinica, Beijing Jiang Minxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1993年第1期17-31,共15页
Based on the study of folds and related conjugate shear joints, the tectonic stress fields of the Urumqi-Usu region to the north of the North Tianshan Mountains have been reconstructed. Furthermore the author discusse... Based on the study of folds and related conjugate shear joints, the tectonic stress fields of the Urumqi-Usu region to the north of the North Tianshan Mountains have been reconstructed. Furthermore the author discussed the tectonic movements and their dynamic features. The early tectonic movement in the investigated region occurred from the end of the Late Jurassic to the initial stage of the Early Cretaceous, with the maximum (tensile) and minimum (compressional) principal stress trajectories in the tectonic stress field being in E-W and S-N directions respectively; the late tectogenesis took place from the end of the Early Pleistocene to the initial Middle Pleistocene, with the maximum and minimum principal stress trajectories in the late stress field striking in WNW and NE-NNE directions respectively. Through computer-aided simulated calculation by the finite element method and analysis of geological structure, it has been ascertained that the early tectogenesis is a nearly N-S compressive movement and the late one a NE to nearly N-S compressive movement with reverse shear. The dynamic force which caused the tectogeneses came from the movement of the southern major fault, i.e. the North Tianshan Mountains. 展开更多
关键词 the Urumqi-Usu region tectonic stress field tectogenesis shear joints finite element method
下载PDF
Evolution of 3D tectonic stress field and fault movement in North China
16
作者 陈连旺 陆远忠 +2 位作者 郭若眉 许桂林 张杰 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第4期371-383,共13页
Based on data of fault movement surveying, we simulate the evolution process of three dimensional stress field in North China by three dimensional finite element method. Evolutional patterns in one-year time scale fro... Based on data of fault movement surveying, we simulate the evolution process of three dimensional stress field in North China by three dimensional finite element method. Evolutional patterns in one-year time scale from 1986 to 1997 have been illustrated and the evolution characteristics of stress field have been analyzed. In comparison with the seismic activity among that time interval in North China, we have primarily discussed the relationship between the evolution of stress field and seismic activity. 展开更多
关键词 North China fault displacement tectonic stress field evolutional pattern 3D finite element model
下载PDF
Fault slip and modern tectonic stress field in and around Kunming basin
17
作者 荆振杰 杜义 谢富仁 《Acta Seismologica Sinica(English Edition)》 CSCD 2008年第3期233-242,332,共11页
Kunming basin is a Cenozoic faulted basin under the control of mainly SN-trending active faults. In and around the basin, there are a total of eight major active faults. Seismo-geological survey and fault slip observa... Kunming basin is a Cenozoic faulted basin under the control of mainly SN-trending active faults. In and around the basin, there are a total of eight major active faults. Seismo-geological survey and fault slip observation show that the SN- and NE-trending active faults are mostly sinistral strike-slip faults, while the NW-trending faults are mostly dextral strike-slip faults. Using stress tensor inversion method with 706 active fault striation data at 22 measurement sites, we determined tectonic stress field of the study area. The result shows that modern tectonic stress field in and around Kunming basin is characterized by NNW-SSE compression, ENE-WSW extension, and strike-slip stress regimes. The maximum principal compressional stress (σ1) is oriented 335o;o, with an average dip angle of 21°; the minimum (σ3) is oriented 44o;3o, with an average dip angle of 14°, and the intermediate (σ2) has a high, or nearly vertical, dip angle. The inversion result from fault slip data is consistent with the result from focal mechanism solutions. 展开更多
关键词 Kunming basin fault striation tectonic stress field
下载PDF
Tensile Fractures and in situ Stress Measurement Data Constraints on Cretaceous-Present Tectonic Stress Field Evolution of the Tanlu Fault Zone in Shandong Province,North China Craton
18
作者 YANG Chengwei WANG Chenghu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1616-1624,共9页
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ... Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate. 展开更多
关键词 borehole television tectonic stress field hydraulic fracturing Tanlu fault zone North China Craton
下载PDF
The Quaternary Tectonic Stress Field of the Kunming Basin and Its Surrounding Areas
19
作者 Du Yi Zhenjie Xie Furen 《Earthquake Research in China》 2010年第1期70-81,共12页
The Kunming basin is a Cenozoic faulted basin controlled by N-S trending active faults. there are totally 8 main active faults in and around the Kunming basin area. Inversion of fault slip data suggests that the stres... The Kunming basin is a Cenozoic faulted basin controlled by N-S trending active faults. there are totally 8 main active faults in and around the Kunming basin area. Inversion of fault slip data suggests that the stress field of the Kunming basin has experienced two major stages. In the first stage ( from the late-Pliocene to mid-Pleistocene),the regional tectonic stress field was characterized by near E-W compression and near N-S extension. In the second stage (from the late-Pleistocene to the present),the tectonic stress field has been mainly characterized by NNW-SSE compression and NEE-SWW extension. Under such a stress field,the near N-S trending faults in the region mainly show a lateral slip. 展开更多
关键词 Kunming basin Fault slip tectonic stress field QUATERNARY
下载PDF
Research into the Regional Characteristics of the Tectonic Stress Field in Jiashi, Xinjiang and Its Surrounding Areas
20
作者 Gao Guoying Wang Haitao Nie Xiaohong Long Haiying 《Earthquake Research in China》 2007年第4期397-408,共12页
Jiashi and its surrounding areas are composed of many structural zones. Using the focal mechanism solutions of 59 moderately strong earthquakes in Jiashi and its surrounding areas, and combining these with the calcula... Jiashi and its surrounding areas are composed of many structural zones. Using the focal mechanism solutions of 59 moderately strong earthquakes in Jiashi and its surrounding areas, and combining these with the calculation results of system cluster and stress field inversion, we aualyzed the evolvement characteristics of the stress field for different times and different regions. The results were as follows: The earthquakes in Jiashi are mainly strike-slip. However, those of the Kalpin block are mainly reverse events, showing an obvious thrusting. The regional characteristics are different from other areas. The direction of the regional principal stress field is near NS. However, under different tectonic backgrounds, the directions of the stress fields are different. The direction of the principal compress stress is near NS in the Kashi-Wuqia area. But before and after the 3 earthquakes with M7.0, dynamic evolution from NW to NS and then to NE with time process was observed. The Kalpin block has been dominated by a consistent stress field in the NW direction for a long time. However, the direction of the stress field of the Jiashi region is NE. Since 1996, the direction of the regional stress field has changed obviously. The direction of the P axis was deflected towards the NE, and the plunge angle increased. The result shows clearly the regional characteristics and variation of the distribution pattern of the stress field in different tectonic environments. 展开更多
关键词 Focal mechanism solution tectonic stress field Region characteristic Jiashi andits surrounding area
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部