期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Forward Modeling of Gravity,Gravity Gradients,and Magnetic Anomalies due to Complex Bodies 被引量:6
1
作者 骆遥 姚长利 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期280-286,共7页
On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate ... On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies. 展开更多
关键词 polyhedral body gravitational field and magnetic field gravity gradient tensor forward calculation coordinate transformation
下载PDF
Fast modeling of gravity gradients from topographic surface data using GPU parallel algorithm 被引量:1
2
作者 Xuli Tan Qingbin Wang +2 位作者 Jinkai Feng Yan Huang Ziyan Huang 《Geodesy and Geodynamics》 CSCD 2021年第4期288-297,共10页
The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic part... The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic parts to obtain more variational information.A model generated from a topographic surface database is more appropriate to represent gradiometric effects derived from near-surface mass,as other kinds of data can hardly reach the spatial resolution requirement.The rectangle prism method,namely an analytic integration of Newtonian potential integrals,is a reliable and commonly used approach to modeling gravity gradient,whereas its computing efficiency is extremely low.A modified rectangle prism method and a graphical processing unit(GPU)parallel algorithm were proposed to speed up the modeling process.The modified method avoided massive redundant computations by deforming formulas according to the symmetries of prisms’integral regions,and the proposed algorithm parallelized this method’s computing process.The parallel algorithm was compared with a conventional serial algorithm using 100 elevation data in two topographic areas(rough and moderate terrain).Modeling differences between the two algorithms were less than 0.1 E,which is attributed to precision differences between single-precision and double-precision float numbers.The parallel algorithm showed computational efficiency approximately 200 times higher than the serial algorithm in experiments,demonstrating its effective speeding up in the modeling process.Further analysis indicates that both the modified method and computational parallelism through GPU contributed to the proposed algorithm’s performances in experiments. 展开更多
关键词 gravity gradient Topographic surface data Rectangle prism method Parallel computation Graphical processing unit(GPU)
下载PDF
Autonomous orbit determination using epoch-differenced gravity gradients and starlight refraction 被引量:4
3
作者 Pei CHEN Tengda SUN Xiucong SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第5期1740-1749,共10页
Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight... Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved. 展开更多
关键词 Autonomous orbit determination Epoch-differenced gravity gradients GOCE Information fusion filter NAVIGATION Starlight refraction
原文传递
Predicting bathymetry based on vertical gravity gradient anomaly and analyses for various influential factors
4
作者 Huan Xu Jinhai Yu +3 位作者 Yanyan Zeng Qiuyu Wang Yuwei Tian Zhongmiao Sun 《Geodesy and Geodynamics》 EI CSCD 2024年第4期386-396,共11页
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti... The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively. 展开更多
关键词 Rectangular prism Vertical gravity gradient BATHYMETRY Numerical simulation Prediction error
下载PDF
Noise filtering of full-gravity gradient tensor data 被引量:8
5
作者 袁园 黄大年 +1 位作者 余青露 耿美霞 《Applied Geophysics》 SCIE CSCD 2013年第3期241-250,357,共11页
In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are... In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border. 展开更多
关键词 gravity gradient tensor Laplace equation optimal linear inversion low-passfilter high frequency signal
下载PDF
Full gravity gradient tensors from vertical gravity by cosine transform 被引量:8
6
作者 蒋甫玉 黄岩 燕轲 《Applied Geophysics》 SCIE CSCD 2012年第3期247-260,359,共15页
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are... We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution. 展开更多
关键词 gravity anomaly gravity gradient tensor Fourier transform cosine transform
下载PDF
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization 被引量:4
7
作者 刘金钊 柳林涛 +1 位作者 梁星辉 叶周润 《Applied Geophysics》 SCIE CSCD 2015年第2期137-146,273,共11页
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b... We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies. 展开更多
关键词 extrapolated Tikhonov regularization depth weighting gravity gradient tensor eieenvector
下载PDF
Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method 被引量:4
8
作者 蒋甫玉 高丽坤 《Applied Geophysics》 SCIE CSCD 2012年第2期119-130,233,共13页
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav... In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method. 展开更多
关键词 Small sub-domain filter gravity gradient tensor edge enhancement gravity anomaly
下载PDF
A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery 被引量:5
9
作者 郑伟 许厚泽 +1 位作者 钟敏 员美娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期577-584,共8页
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimension... The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution. 展开更多
关键词 GOCE GOCE Follow-On radial and three-dimensional gravity gradients satellite gravity gradiometry Earth's gravitational field
下载PDF
Analysis of limitations on recovery of gravity field based on satellite gravity gradient data 被引量:5
10
作者 Xiaoyun Wan Jinhai Yu +2 位作者 Lei Liang Jiangjun Ran Richard Fiifi Annan 《Geodesy and Geodynamics》 CSCD 2021年第1期31-42,共12页
Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,whi... Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection. 展开更多
关键词 gravity gradients Gradiometer measurement bandwidth Frequency analysis Polar gaps Time-variable gravity field
下载PDF
The absolute gravity measurement by FG5 gravimeter at Great Wall Station,Antarctica 被引量:3
11
作者 张胜凯 鄂栋臣 +3 位作者 何志堂 王泽民 杨元德 张士伟 《Chinese Journal of Polar Science》 2007年第2期155-160,共6页
Gravity measurement is of great importance to the height datum in Antarctica. The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument. The gravity data... Gravity measurement is of great importance to the height datum in Antarctica. The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument. The gravity data was processed with corrections of earth tide, ocean tide, polar motion and the atmospher, and the RMS is within -3×10^-8 ms^-2. The vertical and horizontal gravity gradients were measured using 2 LaCoaste & Romberg (LCR) gravimeters. The absolute gravity measurement provides the fundamental data for the validation and calibration of the satellite gravity projects such as CHAMP, GRACE and GOCE, and for the high accuracy geold model. 展开更多
关键词 absolute gravimetry gravity gradients Antarctica.
下载PDF
Selecting the optimum location of the corner using gravity gradient method
12
作者 孙鹏飞 吴燕冈 +2 位作者 杨春成 韩兆红 范美宁 《Applied Geophysics》 SCIE CSCD 2011年第4期269-276,370,共9页
The conventional gravity gradient method to plot the geologic body location is fuzzy. When the depth is large and the geologic body is small, the Vzz and Vzx derivative errors are also large. We describe that using th... The conventional gravity gradient method to plot the geologic body location is fuzzy. When the depth is large and the geologic body is small, the Vzz and Vzx derivative errors are also large. We describe that using the status distinguishing factor to optimally determine the comer location is more accurate than the conventional higher-order derivative method. Thus, a better small geologic body and fault resolution is obtained by using the gravity gradient method and trial theoretical model calculation. The actual data is better processed, providing a better basis for prospecting and determination of subsurface geologic structure. 展开更多
关键词 high-order gravity derivative gravity gradient method status distinzuishinz factor
下载PDF
Characteristics and Tectonic Significance of the Gravity Field in South China 被引量:9
13
作者 YANYafen WANGGuangjie ZHANGZhongjie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第6期1235-1244,共10页
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China.... Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°. 展开更多
关键词 South China gravity gradient belt Moho discontinuity block boundary Ganjiang fault hidden structural belt
下载PDF
Bathymetry predicted from vertical gravity gradient anomalies and ship soundings 被引量:10
14
作者 Hu Minzhang Li Jiancheng +1 位作者 Li Hui Xin Lelin 《Geodesy and Geodynamics》 2014年第1期41-46,共6页
In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted fro... In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted from vertical gravity gradient anomalies and ship soundings in the experimental area from the northwest Pacific. The accuracy of the model is evaluated using ship soundings and existing models, including ETOPO1, GEBCO, DTU10 and V15.1 from SIO. The model's STD is 69. 481m, comparable with V15.1 which is generally believed to have the highest accuracy. 展开更多
关键词 BATHYMETRY vertical gravity gradient admittance function ship soundings ISOSTASY
下载PDF
Joint inversion of gravity and multiple components of tensor gravity data 被引量:3
15
作者 鲁光银 曹书锦 朱自强 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1767-1777,共11页
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui... Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective. 展开更多
关键词 hyper-parameter regularization full gravity gradient tensor preconditioned matrix Occam's inversion focusinginversion
下载PDF
A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models 被引量:8
16
作者 Xinyu Xu Yongqi Zhao +1 位作者 Tilo Reubelt Robert Tenzer 《Geodesy and Geodynamics》 2017年第4期260-272,共13页
We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG) data and the Satellite-to-Satellite Tracking (SST) observations along the GOC... We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG) data and the Satellite-to-Satellite Tracking (SST) observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz) of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az) along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultrahigh degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_- GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPSleveling data for the frequency band of the degree between 20 and 160. 展开更多
关键词 Earth's gravity field Geopotential model gravity gradient Validation SateLlite-to-satellite tracking
下载PDF
Gravity and gravity gradient changes caused by a point dislocation 被引量:2
17
作者 黄建梁 李辉 李瑞浩 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期89-99,共11页
In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a pointdislocation, and gave the concise mathematical deduction with definite physical implication in dealing wit... In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a pointdislocation, and gave the concise mathematical deduction with definite physical implication in dealing with thesingular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient,gravity-vertical-displacement gradient. The conclusions a re: (1) Gravity and gravit y gradient changes are verysmall with the change of vertical positionl (2) Gravity change is much greater than the gravity gradient changewhich is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10-50 percent of thetotal gravity change caused by dislocation. The signs (positive or negative) of total gravity change and verticaldisplacement are opposite each other at the same point for strike slip and dip slip 1 (4) Gravity-vertical displacement-gradient is not constantl it manifests a variety of patterns for different dislocation modelsl (5) Gravityvertical-displacement-gradient is approximately equal to a pparent gra vit y-- vert ical- displacement -gradient. 展开更多
关键词 gravity field gradient gravity Potential DISLOCATION
下载PDF
Gravity anomaly before the Leshan M5.0 earthquake? 被引量:1
18
作者 Wei Jin Liu Ziwei +3 位作者 Sun Shaoan Kang Kaixuan Shen Chongyang Li Hui 《Geodesy and Geodynamics》 2015年第2期101-105,共5页
The North-South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations ... The North-South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations one month before the Leshan M5.0 earthquake. 展开更多
关键词 gravity gradient Continuous gravity observations Nonlinear gravity change Leshan M5.0 earthquake Mobile gravity observation network Accumulation gravity change Different gravity change North-South Seismic Belt
下载PDF
The average acceleration approach applied to gravity coefficients recovery based on GOCE orbits 被引量:1
19
作者 Huang Qiang Fan Dongming 《Geodesy and Geodynamics》 2012年第4期18-22,共5页
The average acceleration approach was applied to recover a gravity field model Model;CA from GOCE precise science orbits from September 2 to November 2, 2010, and furthermore a so called sequential least square adjust... The average acceleration approach was applied to recover a gravity field model Model;CA from GOCE precise science orbits from September 2 to November 2, 2010, and furthermore a so called sequential least square adjustment was used. The model was compared with other gravity field models based on CHAMP, GRACE and GOCE. The result shows that the model is superior to gravity field based on CHAMP, and with higher accuracy than other international gravity field models based on only GOCE data before 80 degree. The degree geoid height of Model;CA reaches 3cm up to 90 degree and order. 展开更多
关键词 average acceleration GOCE PSO gravity gradient gravity field
下载PDF
Construction of nonsingular formulae of variance and covariance function of disturbing gravity gradient tensors 被引量:1
20
作者 Liu Xiaogang Zhang Yaofeng +1 位作者 Li Yan Xu Kang 《Geodesy and Geodynamics》 2013年第4期1-8,共8页
When the computational point is approaching the poles, the variance and covariance formulae of the disturbing gravity gradient tensors tend to be infinite, and this is a singular problem. In order to solve the problem... When the computational point is approaching the poles, the variance and covariance formulae of the disturbing gravity gradient tensors tend to be infinite, and this is a singular problem. In order to solve the problem, the authors deduced the practical non-singular computational formulae of the first- and second-order derivatives of the Legendre functions and two kinds of spherical harmonic functions, and then constructed the nonsingular formulae of variance and eovarianee function of disturbing gravity gradient tensors. 展开更多
关键词 NONSINGULAR gravity field model satellite gravity gradient variance COVARIANCE
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部