The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in g...Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in geophysical modeling is rapidly increasing;with this in mind we compare two of the most densely populated sets: EIGEN-6C4 and GGMplus. We characterize them in terms of their frequency histograms, Free Air anomalies, power spectrum, and simple Bouguer anomalies. The nature of the digital elevation models used for data reduction is discussed. We conclude that the GGMplus data set offers a better spatial resolution. To evaluate their effect in geophysical modelling, we chose an inland region with a prominent volcanic structure in which we perform 3D inversions of the respective Bouguer anomalies, obtaining density variations that in principle can be associated with the geologic materials and the structure of the volcanic edifice. Model results are analyzed along sections of the inverted data;we conclude that the GGMplus data set offers higher resolution in the cases analyzed.展开更多
The Hunga Tonga Hunga Ha’apai submarine volcano has experienced repeated eruptions in the latest decades.The recent one,in January 2022,released an enormous amount of energy inducing global perturbations,as tsunamis ...The Hunga Tonga Hunga Ha’apai submarine volcano has experienced repeated eruptions in the latest decades.The recent one,in January 2022,released an enormous amount of energy inducing global perturbations,as tsunamis and atmospheric waves.The structure of the volcano is poorly understood,especially its internal structure.Deep-seated magmatic connections are difficult to define or visualize.We use a high-resolution gravity data set obtained via satellite to calculate the Bouguer anomaly over its structure,to perform a preliminary exploration of its interior.Executing 3D gravity inversions,we find a complex plumbing system with various exhaust trajectories and multiple surface pockets of low-density material within the volcanic edifice;some appear to be associated with ring fractures.This is in line with the report of the 2009 eruption,described as beginning from multiple vents.We found no signs of a magma chamber within 6 km depth,although several volcanic conduits are identified from such depth to the surface.Density variations occur within a plumbing conduit or may vary from one conduit to another in the same volcano.These models yield quantitative estimates for areas of magma-water interaction,constituting a baseline to compare with structural changes to be induced in future eruptions.展开更多
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
文摘Satellite data sets are an asset in global gravity collections;their characteristics vary in coverage and resolution. New collections appear often, and the user must adapt fast to their characteristics. Their use in geophysical modeling is rapidly increasing;with this in mind we compare two of the most densely populated sets: EIGEN-6C4 and GGMplus. We characterize them in terms of their frequency histograms, Free Air anomalies, power spectrum, and simple Bouguer anomalies. The nature of the digital elevation models used for data reduction is discussed. We conclude that the GGMplus data set offers a better spatial resolution. To evaluate their effect in geophysical modelling, we chose an inland region with a prominent volcanic structure in which we perform 3D inversions of the respective Bouguer anomalies, obtaining density variations that in principle can be associated with the geologic materials and the structure of the volcanic edifice. Model results are analyzed along sections of the inverted data;we conclude that the GGMplus data set offers higher resolution in the cases analyzed.
基金support from the Consejo Nacional de Ciencia y Tecnología(CONACYT,México)supported by Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,Universidad Nacional Autónoma de México。
文摘The Hunga Tonga Hunga Ha’apai submarine volcano has experienced repeated eruptions in the latest decades.The recent one,in January 2022,released an enormous amount of energy inducing global perturbations,as tsunamis and atmospheric waves.The structure of the volcano is poorly understood,especially its internal structure.Deep-seated magmatic connections are difficult to define or visualize.We use a high-resolution gravity data set obtained via satellite to calculate the Bouguer anomaly over its structure,to perform a preliminary exploration of its interior.Executing 3D gravity inversions,we find a complex plumbing system with various exhaust trajectories and multiple surface pockets of low-density material within the volcanic edifice;some appear to be associated with ring fractures.This is in line with the report of the 2009 eruption,described as beginning from multiple vents.We found no signs of a magma chamber within 6 km depth,although several volcanic conduits are identified from such depth to the surface.Density variations occur within a plumbing conduit or may vary from one conduit to another in the same volcano.These models yield quantitative estimates for areas of magma-water interaction,constituting a baseline to compare with structural changes to be induced in future eruptions.