In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are...In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.展开更多
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are...We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.展开更多
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav...In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.展开更多
We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine M...We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model efficiency and feasibility of parallel computing gravity gradiometry data. and real density data, and verify the high algorithms in the inversion of full tensor展开更多
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b...We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.展开更多
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate ...On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.展开更多
The gravity field models GUCAS_EGM and GUCAS_EGM_DL are established from GOCE data (GOCE Level 2 Products from Nov. 1 to Dec. 31, 2009) based on the method of the invariants of the gravity gradient tensor, where GUCAS...The gravity field models GUCAS_EGM and GUCAS_EGM_DL are established from GOCE data (GOCE Level 2 Products from Nov. 1 to Dec. 31, 2009) based on the method of the invariants of the gravity gradient tensor, where GUCAS_EGM is derived after GOCE gravity gradient data are filtered with FIR, and GUCAS_EGM_DL is computed with an additional Durbin-Levison arithmetic apart from FIR. Since this method, different from current programs dealing with GOCE data, is introduced for the first time, some new problems are required to be discussed in advance; for example, how to filter GOCE gravity gradient data, how to compute the invariants of the gradient tensor, and how to deal with the pole gap and so on. In addition, by comparing our models with ones recommended by ESA, it can be seen that the variations of GUCAS_EGM and the models recommended by ESA to EGM08 are almost equivalent, and the variation of GUCAS_EGM_DL to EGM08 is obviously less than ones of the recommended models.展开更多
An exact de Sitter solution of scalar-tensor gravity is found in our recent work, in which the non-minimal coupling scalar is rolling along a non-constant potential. Based on this solution, a dust-filled FRW universe ...An exact de Sitter solution of scalar-tensor gravity is found in our recent work, in which the non-minimal coupling scalar is rolling along a non-constant potential. Based on this solution, a dust-filled FRW universe is explored in frame of scalar-tensor gravity in this article. The effective dark energy induced by the sole non-minimal scalar can be quintessence-like, phantom-like, and more significantly, can cross the phantom divide. The rich and varied properties of scalar-tensor gravity even with only one scalar is shown.展开更多
Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n, and the tensor to scalar ratio r for the constant slow-roll in...Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n, and the tensor to scalar ratio r for the constant slow-roll inflation, and obtain the constraint on the slow-roll parameter ηfrom the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and the scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the η attractor is reached.展开更多
基金financially supported by the SinoProbe-09-01(201011078)
文摘In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.
基金supported by the Scientific Research Starting Foundation of HoHai University,China(2084/40801136)the Fundamental Research Funds for the Central Universities(No.2009B12514)
文摘We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.
基金supported by the Scientific Research Starting Foundation of HoHai University, China (No. 2084/40801136)the Fundamental Research Funds for the Central Universities (No.2009B12514).
文摘In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.
基金supported by the Sino-Probe09(No.201011078)National High-tech R&D Program(No.863 and2014AA06A613)
文摘We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model efficiency and feasibility of parallel computing gravity gradiometry data. and real density data, and verify the high algorithms in the inversion of full tensor
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
基金supported by National major special equipment development(No.2011YQ120045)The National Natural Science Fund(No.41074050 and 41304023)
文摘We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金This paper is supported by the National Natural Science Foundation of China (No.40374039)Program for New Century Excellent Talents in University (No. NCET-04-0726)the Focused Subject Program of Beijing (No. XK104910598).
文摘On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.
基金supported by National Natural Science Foundation of China (Grant No.41074015)Program of Chinese Academy of Sciences (Grant No.XMXX280730)
文摘The gravity field models GUCAS_EGM and GUCAS_EGM_DL are established from GOCE data (GOCE Level 2 Products from Nov. 1 to Dec. 31, 2009) based on the method of the invariants of the gravity gradient tensor, where GUCAS_EGM is derived after GOCE gravity gradient data are filtered with FIR, and GUCAS_EGM_DL is computed with an additional Durbin-Levison arithmetic apart from FIR. Since this method, different from current programs dealing with GOCE data, is introduced for the first time, some new problems are required to be discussed in advance; for example, how to filter GOCE gravity gradient data, how to compute the invariants of the gradient tensor, and how to deal with the pole gap and so on. In addition, by comparing our models with ones recommended by ESA, it can be seen that the variations of GUCAS_EGM and the models recommended by ESA to EGM08 are almost equivalent, and the variation of GUCAS_EGM_DL to EGM08 is obviously less than ones of the recommended models.
基金supported by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe National Education Foundation of China(Grant No.200931271104)+2 种基金the National Natural Science Foundation of China(Grant Nos.11075106,11275128,11203006 and 11303003)Shandong Provincial Natural Science Foundation of China(Grant Nos.ZR2012AQ029 and ZR2013AM002)Nature Science Foundation of Zhejiang Province(Grant No.Y6110778)
文摘An exact de Sitter solution of scalar-tensor gravity is found in our recent work, in which the non-minimal coupling scalar is rolling along a non-constant potential. Based on this solution, a dust-filled FRW universe is explored in frame of scalar-tensor gravity in this article. The effective dark energy induced by the sole non-minimal scalar can be quintessence-like, phantom-like, and more significantly, can cross the phantom divide. The rich and varied properties of scalar-tensor gravity even with only one scalar is shown.
基金supported by the National Natural Science Foundation of China(Grant No.11605061)the Fundamental Research Funds for the Central Universities(Grant No.XDJK2017C059)
文摘Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n, and the tensor to scalar ratio r for the constant slow-roll inflation, and obtain the constraint on the slow-roll parameter ηfrom the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and the scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the η attractor is reached.