期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Improved gray wolf optimizer for distributed flexible job shop scheduling problem 被引量:6
1
作者 LI XinYu XIE Jin +2 位作者 MA QingJi GAO Liang LI PeiGen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第9期2105-2115,共11页
The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in th... The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in the manufacturing industries and comprises the following three subproblems:the assignment of jobs to factories,the scheduling of operations to machines,and the sequence of operations on machines.However,studies on DFJSP are seldom because of its difficulty.This paper proposes an effective improved gray wolf optimizer(IGWO)to solve the aforementioned problem.In this algorithm,new encoding and decoding schemes are designed to represent the three subproblems and transform the encoding into a feasible schedule,respectively.Four crossover operators are developed to expand the search space.A local search strategy with the concept of a critical factory is also proposed to improve the exploitability of IGWO.Effective schedules can be obtained by changing factory assignments and operation sequences in the critical factory.The proposed IGWO algorithm is evaluated on 69 famous benchmark instances and compared with six state-of-the-art algorithms to demonstrate its efficacy considering solution quality and computational efficiency.Experimental results show that the proposed algorithm has achieved good improvement.Particularly,the proposed IGWO updates the new upper bounds of 13 difficult benchmark instances. 展开更多
关键词 distributed and flexible job shop scheduling gray wolf optimizer critical factory
原文传递
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method
2
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system
3
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(SVR) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
下载PDF
Improved Clamped Diode Based Z-Source Network for Three Phase Induction Motor
4
作者 D.Bensiker Raja Singh R.Suja Mani Malar 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期683-702,共20页
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik... The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error. 展开更多
关键词 Three phase induction motor voltage source inverter improvedΓZSI with clamping diode PI controller fractional order PID controller gray wolf optimizer
下载PDF
Automatic Anomaly Monitoring in Public Surveillance Areas
5
作者 Mohammed Alarfaj Mahwish Pervaiz +4 位作者 Yazeed Yasin Ghadi Tamara al Shloul Suliman A.Alsuhibany Ahmad Jalal Jeongmin Park 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2655-2671,共17页
With the dramatic increase in video surveillance applications and public safety measures,the need for an accurate and effective system for abnormal/sus-picious activity classification also increases.Although it has mul... With the dramatic increase in video surveillance applications and public safety measures,the need for an accurate and effective system for abnormal/sus-picious activity classification also increases.Although it has multiple applications,the problem is very challenging.In this paper,a novel approach for detecting nor-mal/abnormal activity has been proposed.We used the Gaussian Mixture Model(GMM)and Kalmanfilter to detect and track the objects,respectively.After that,we performed shadow removal to segment an object and its shadow.After object segmentation we performed occlusion detection method to detect occlusion between multiple human silhouettes and we implemented a novel method for region shrinking to isolate occluded humans.Fuzzy c-mean is utilized to verify human silhouettes and motion based features including velocity and opticalflow are extracted for each identified silhouettes.Gray Wolf Optimizer(GWO)is used to optimize feature set followed by abnormal event classification that is performed using the XG-Boost classifier.This system is applicable in any surveillance appli-cation used for event detection or anomaly detection.Performance of proposed system is evaluated using University of Minnesota(UMN)dataset and UBI(Uni-versity of Beira Interior)-Fight dataset,each having different type of anomaly.The mean accuracy for the UMN and UBI-Fight datasets is 90.14%and 76.9%respec-tively.These results are more accurate as compared to other existing methods. 展开更多
关键词 Abnormal event classification gray wolf optimizer region shrinking xg-boost classifier
下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:1
6
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
下载PDF
A Hybrid ANN-GWO Algorithm for Prediction of Heart Disease 被引量:4
7
作者 Hamza Turabieh 《American Journal of Operations Research》 2016年第2期136-146,共11页
The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization... The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization is a global search method while gradient-based back propagation method is a local search one. The proposed algorithm implies the ability of ANN to find a relationship between the input and the output variables while the stochastic search ability of GWO is used for finding the initial optimal weights and biases of the ANN to reduce the probability of ANN getting stuck at local minima and slowly converging to global optimum. For evaluation purpose, the performance of hybrid model (ANN-GWO) was compared with standard back-propagation neural network (BPNN) using Root Mean Square Error (RMSE). The results demonstrate that the proposed model increases the convergence speed and the accuracy of prediction. 展开更多
关键词 Artificial Neural Network gray wolf optimizer BACK-PROPAGATION Heart Disease
下载PDF
Hybrid gray wolf optimization-cuckoo search algorithm for RFID network planning
8
作者 Quan Yixuan Zheng Jiali +2 位作者 Xie Xiaode Lin Zihan Luo Wencong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第6期91-102,共12页
In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network plann... In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network planning(RNP)has become the primary concern.Compared with the traditional methods,meta-heuristic method is widely used in RNP.Aiming at the target requirements of RFID,such as fewer readers,covering more tags,reducing the interference between readers and saving costs,this paper proposes a hybrid gray wolf optimization-cuckoo search(GWO-CS)algorithm.This method uses the input representation based on random gray wolf search and evaluates the tag density and location to determine the combination performance of the reader's propagation area.Compared with particle swarm optimization(PSO)algorithm,cuckoo search(CS)algorithm and gray wolf optimization(GWO)algorithm under the same experimental conditions,the coverage of GWO-CS is 9.306%higher than that of PSO algorithm,6.963%higher than that of CS algorithm,and 3.488%higher than that of GWO algorithm.The results show that the GWO-CS algorithm cannot only improve the global search range,but also improve the local search depth. 展开更多
关键词 radio frequency identification(RFID) gray wolf optimization(GWO)algorithm cuckoo search(CS)algorithm dynamic adjustment of discovery probability directional mutation
原文传递
Short-term Load Forecasting of Regional Distribution Network Based on Generalized Regression Neural Network Optimized by Grey Wolf Optimization Algorithm 被引量:11
9
作者 Leijiao Ge Yiming Xian +3 位作者 Zhongguan Wang Bo Gao Fujian Chi Kuo Sun 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1093-1101,共9页
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity... Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model. 展开更多
关键词 Factor analysis generalized regression neural network gray wolf optimization maximum information coefficient short-term load forecasting
原文传递
Enhancing the efficiency of cabin heaters in emergency shelters after earthquakes through an optimized fuzzy controller
10
作者 Erkan Duman Dila Seckin 《Building Simulation》 SCIE EI CSCD 2023年第9期1759-1776,共18页
In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive ... In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive in the freezing weather.A warm shelter was the most basic requirement of these families.Container buildings are a rapid and easy solution to this issue.However,there is a need for a more effective and safe heating option than a wood fire for these buildings.In this study,cabin heaters,which allow truck drivers to warm up when they park their vehicles to sleep,are specially optimized for emergency shelters after an earthquake.An optimized fuzzy controller was developed to use in such buildings,which allows an air–fuel ratio in the combustion chamber of the cabin heater to be controlled adaptively based on system dynamics to get lower carbon emissions and fuel consumption.The TRNSYS software was used to establish the transient simulation model of a cabin heater with a capacity of 4 kW for a typical 21 m^(2) shelter building in Turkey’s cold regions.The developed fuzzy controller carried out the heating process of this shelter from the 15th of November to the 15th of March.Instead of using expert knowledge,the Gray Wolf Optimization(GWO)method was applied to optimize the fuzzy controller parameters developed for the cabin heater.With the optimized fuzzy controller,the fuel consumption at the end of the heating season was reduced by an average of 0.2 L/h,and the cabin heater’s efficiency increased by more than 13%.Our simulation results show that the intelligent controller we developed could improve diesel fuel combustion efficiency by up to 85%. 展开更多
关键词 parking heater cabin heater emergency shelters fuzzy controller gray wolf optimization TRNSYS simulation
原文传递
Cascade Optimization Control of Unmanned Vehicle Path Tracking Under Harsh Driving Conditions
11
作者 黄迎港 罗文广 +1 位作者 黄丹 蓝红莉 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期114-125,共12页
Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study propose... Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls. 展开更多
关键词 unmanned vehicles path tracking harsh driving conditions cascade control improved gray wolf optimization algorithm backpropagation neural network
原文传递
Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering
12
作者 Hongwei Li Lilong Dou +3 位作者 Shuaibing Li Yongqiang Kang Xingzu Yang Haiying Dong 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期129-141,共13页
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f... An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC. 展开更多
关键词 On-load tap changer singular spectrum analysis Hilbert-Huang transform gray wolf optimization algorithm fuzzy C-means clustering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部