The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent s...This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction is given. The proposed technique is illustrated by means of numerical examples.展开更多
Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix ine...Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.展开更多
This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established fo...This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established for the control systems if there is a piecewise Lyapunov-Krasovskii functional, and moreover, the functional can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. A numerical example is given to demonstrate the efficiency and advantage of the proposed method.展开更多
In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switc...In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.展开更多
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is pr...This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.展开更多
This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New line...This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.展开更多
This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space ...This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.展开更多
A newly designed approach of simultaneous stabilization is given for linear discrete time-delay systems. The problem of stabilization for a collection of systems is discussed initially. Adequate condition are obtained...A newly designed approach of simultaneous stabilization is given for linear discrete time-delay systems. The problem of stabilization for a collection of systems is discussed initially. Adequate condition are obtained in terms of linear matrix inequalities (LMIs) which are independent of time delays such that the resultant collection of discrete time-delay systems are stable with an upper bound of the quadratic performance index. Subsequently, controllers are designed such that the resultant closed-loop discrete time-delay systems are simultaneously stabilized with the upper bound of the quadratic performance index. Finally,a numerical example is given to illustrate the design method.展开更多
This paper deals with the issues of robust stability for uncertain discrete-time switched systems with mode-dependent time delays.Based on a novel difference inequality and a switched Lyapunov function,new delay-depen...This paper deals with the issues of robust stability for uncertain discrete-time switched systems with mode-dependent time delays.Based on a novel difference inequality and a switched Lyapunov function,new delay-dependent stability criteria are formulated in terms of linear matrix inequalities (LMIs) which are not contained in known literature.A numerical example is given to demonstrate that the proposed criteria improves some existing results significantly with much less computational effort.展开更多
New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F...New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F(z), in negative feedback with a matrix of periodic/aperiodic gains A(k), k = 0,1, 2,... and a vector of certain classes of non-monotone/monotone nonlinearities φp(-), without restrictions on their slopes and also not requiring path-independence of their line integrals. The stability conditions, which are derived in the frequency domain, have the following features: i) They involve the positive definiteness of the real part (as evaluated on |z| = 1) of the product of Г (z) and a matrix multiplier function of z. ii) For periodic A(k), one class of multiplier functions can be chosen so as to impose no constraint on the rate of variations A(k), but for aperiodic A(k), which allows a more general multiplier function, constraints are imposed on certain global averages of the generalized eigenvalues of (A(k + 1),A(k)), k = 1, 2 iii) They are distinct from and less restrictive than recent results in the literature.展开更多
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
文摘This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction is given. The proposed technique is illustrated by means of numerical examples.
文摘Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.
文摘This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established for the control systems if there is a piecewise Lyapunov-Krasovskii functional, and moreover, the functional can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. A numerical example is given to demonstrate the efficiency and advantage of the proposed method.
基金This work was supported by Doctorate Foundation of Shenyang Normal University of China (No. 054-554405-01)
文摘In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.
文摘This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.
文摘This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.
文摘This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.
基金This project was Supported by the National Natural Science Foundation of China (50335020,60574011) PostdoctoralFund (2005038553) Science Research Important Foundation in Hubei Provincial Department of Education(2002z04001).
文摘A newly designed approach of simultaneous stabilization is given for linear discrete time-delay systems. The problem of stabilization for a collection of systems is discussed initially. Adequate condition are obtained in terms of linear matrix inequalities (LMIs) which are independent of time delays such that the resultant collection of discrete time-delay systems are stable with an upper bound of the quadratic performance index. Subsequently, controllers are designed such that the resultant closed-loop discrete time-delay systems are simultaneously stabilized with the upper bound of the quadratic performance index. Finally,a numerical example is given to illustrate the design method.
基金Supported by the National Natural Science Foundation of China (Grant No. 60736029)the Program for New Century Excellent Talents in University (Grant No. 06-0811)
文摘This paper deals with the issues of robust stability for uncertain discrete-time switched systems with mode-dependent time delays.Based on a novel difference inequality and a switched Lyapunov function,new delay-dependent stability criteria are formulated in terms of linear matrix inequalities (LMIs) which are not contained in known literature.A numerical example is given to demonstrate that the proposed criteria improves some existing results significantly with much less computational effort.
文摘New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F(z), in negative feedback with a matrix of periodic/aperiodic gains A(k), k = 0,1, 2,... and a vector of certain classes of non-monotone/monotone nonlinearities φp(-), without restrictions on their slopes and also not requiring path-independence of their line integrals. The stability conditions, which are derived in the frequency domain, have the following features: i) They involve the positive definiteness of the real part (as evaluated on |z| = 1) of the product of Г (z) and a matrix multiplier function of z. ii) For periodic A(k), one class of multiplier functions can be chosen so as to impose no constraint on the rate of variations A(k), but for aperiodic A(k), which allows a more general multiplier function, constraints are imposed on certain global averages of the generalized eigenvalues of (A(k + 1),A(k)), k = 1, 2 iii) They are distinct from and less restrictive than recent results in the literature.