The properties of feldspar and quartze are studied in this article from a fractal point of view using gray-scale micro-images of granite samples collected at the Fangshan (房山) granite body in Hebei (河北) Provin...The properties of feldspar and quartze are studied in this article from a fractal point of view using gray-scale micro-images of granite samples collected at the Fangshan (房山) granite body in Hebei (河北) Province, China, which can be regarded as an ideal granite in the sense of Vistelius. We found that there exist power-law relationships between the eigenvalues of the gray-scale matrices and their ranks for the feldspar and quartz. The fractal model used here is a λ-R model similar to the N-λ model proposed by Qiuming Cheng in 2005. Meanwhile, we found that average variances for the gray-scale matrices of feldspar are larger than those of quartz on the same sections, and this may be useful for auto-identification of feldspar and quartz as well as other minerals.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 40373003, 40502029, 40525009, 40638041)State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. GPMR2007-23)
文摘The properties of feldspar and quartze are studied in this article from a fractal point of view using gray-scale micro-images of granite samples collected at the Fangshan (房山) granite body in Hebei (河北) Province, China, which can be regarded as an ideal granite in the sense of Vistelius. We found that there exist power-law relationships between the eigenvalues of the gray-scale matrices and their ranks for the feldspar and quartz. The fractal model used here is a λ-R model similar to the N-λ model proposed by Qiuming Cheng in 2005. Meanwhile, we found that average variances for the gray-scale matrices of feldspar are larger than those of quartz on the same sections, and this may be useful for auto-identification of feldspar and quartz as well as other minerals.