In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the...In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the design and the attacks on these hash functions. However, it is very significant to study some properties of their primitives and underlying permutations. Because some properties reflect the pseudo-randomness of the structures. Moreover, they help us to find new cryptanalysis for some block cipher structures. In this paper, we analyze the resistance of JH and Grcstl-512 against structural properties built on integral distinguishers. And then 31.5 (out of 42) rounds integral distinguishers for JH compression function and 11.5 (out of 14) rounds for Grcstl-512 compression function are presented.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60873259 and No. 60903212)Knowledge Innovation Project of the Chinese Academy of Sciences
文摘In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the design and the attacks on these hash functions. However, it is very significant to study some properties of their primitives and underlying permutations. Because some properties reflect the pseudo-randomness of the structures. Moreover, they help us to find new cryptanalysis for some block cipher structures. In this paper, we analyze the resistance of JH and Grcstl-512 against structural properties built on integral distinguishers. And then 31.5 (out of 42) rounds integral distinguishers for JH compression function and 11.5 (out of 14) rounds for Grcstl-512 compression function are presented.