Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a compo...Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274-275 Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95-11.29 wt% and 7.32- 12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophfle elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya'ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.展开更多
A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithos...A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686-930 ppm) and HREE contents, low Y(11.9-19.8 ppm) and Yb(1.08-1.52 ppm) contents, and they therefore have high Sr/Y(42-63) and La/Yb(24-36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K2O/Na2O ratios(0.57-0.81), low Mg O contents(0.77-3.06 wt%), low Mg# value(17-49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.展开更多
The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Preca...The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Precambrian basements recently. Notably, magmatic rocks were barely reported to limit the exact ages of the Zhalantun basements. In this study, we collected rhyolite, gabbro and quartz diorite for zircon in-situ U-Pb isotopic dating, which yield crystallization ages of ~505 Ma, ~447 Ma and ~125 Ma, respectively. Muscovite schist and siltstone define maximum depositional ages of ~499 Ma and ~489 Ma, respectively. Additionally, these dated supracrustal rocks and plutons also yield ancient detrital/xenocryst zircon ages of ~600-1000 Ma, ~1600-2220 Ma, ~2400 Ma, ~2600-2860 Ma. Based on the whole-rock major and trace element compositions, the ~505 Ma rhyolites display high SiO2 and alkaline contents, low Fe2O3T, TiO2 and Al2O3, and relatively high Mg O and Mg#, which exhibit calc-alkaline characteristics. These rhyolites yield fractionated REE patterns and negative Nb, Ta, Ti, Sr, P and Eu anomalies and positive Zr anomalies. The geochemistry, petrology and Lu-Hf isotopes imply that rhyolites were derived from the partial melting of continental basalt induced by upwelling of sub-arc mantle magmas, and then experienced fractional crystallization of plagioclase, which points to a continental arc regime. The ~447 Ma gabbros exhibit low Si O2 and alkaline contents, high Fe2 O3 T, Ti O2, Mg O and Mg#. They show minor depletions of La and Ce, flat MREE and HREE patterns, and negative Nb, Ta, Zr and Hf anomalies. Both sub-arc mantle and N-MORB-like mantle were involved in the formation of the gabbros, indicative of a probable back-arc basin tectonic setting. Given that, the previously believed Proterozoic supracrustal rocks and several plutons from the Zhalantun Precambrian basements were proved to be Paleozoic to Mesozoic rocks, among which these Paleozoic magmatic rocks were generally related to subduction regime. So far, none Proterozoic rocks have been identified from the Zhalantun Precambrian basement, though some ~600-3210 Ma ancient detrital/xenocryst zircons were reported. Combined with ancient zircon ages and newly reported ~2.5 Ga and ~1.8 Ga granites from the south of the Zhalantun, therefore, the Precambrian rocks probably once exposed in the Zhalantun while they were re-worked and consumed during later long tectonic evolutionary history, resulting in absence of Precambrian rocks in the Zhalantun.展开更多
The Hua’aobaote Pb-Zn-Ag Polymetallic orefield is situated in the southern section of the Great Xing’an Range(GXAR),which has experienced extensive magmatism.Since the Paleozoic,there are two stages of magmatism in ...The Hua’aobaote Pb-Zn-Ag Polymetallic orefield is situated in the southern section of the Great Xing’an Range(GXAR),which has experienced extensive magmatism.Since the Paleozoic,there are two stages of magmatism in Hua’aobaote orefield occurred in the Paleozoic and Mesozoic.The Mesozoic magmatism is of great significance for the PbZn-Ag Polymetallic mineralization in Hua’aobaote orefield.In this study,new geochemical data was obtained to discuss the timing and petrogenesis of the magmatic rocks and its geodynamic and metallogenic significance.Zircon U-Pb ages reveal that the felsic igneous rocks from the Hua’aobaote orefield were formed in the Early Permian(294.8±3.2 Ma)and Early Cretaceous(132.6±1.4 Ma).Geochemically,the Early Permian granodiorite porphyrite is characterized by high Sr/Y(42-63)ratios and Mg^(#)(62.24-70.74)values and low heavy rare earth element(HREE)(5.09-6.79 ppm)contents.The granodiorite porphyrite is also characterized by depleted Sr-Nd initial isotopic signatures[ε_(Nd)(t)=5.91-7.59,(^(87)Sr/^(86)Sr)i=0.7029-0.7030],exhibiting adakitic characteristics.The Early Cretaceous granite porphyry and rhyolite are A-type felsic igneous rocks,and demonstrate high SiO_(2),Na_(2)O+K_(2)O and rare earth element(REE)contents,low CaO and MgO contents,low(^(87)Sr/^(86)Sr)i ratios(0.7044-0.7058),and positive ε_(Nd)(t)values(2.57-4.65).Whole-rock Pb isotopic compositions in granodiorite porphyrite are:206Pb/204Pb=17.631-18.149,^(207)Pb/^(204)Pb=15.422-15.450,and ^(208)Pb/^(204)Pb=37.325-37.729.The granite porphyry and rhyolite have initial ^(206)Pb/^(204)Pb,^(207)Pb/^(204)Pb,and ^(208)Pb/^(204)Pb ratios of 18.106-19.309,15.489-15.539,and 37.821-38.05,respectively.Sr-Nd-Pb isotopic evidence suggests that the Early Permian granodiorite porphyrite is likely to derive from slab melts and modified by peridotitic mantle wedge in the subduction tectonic setting of the Paleo-Asian Ocean.The Early Cretaceous A-type felsic igneous rocks were derived from juvenile lower crust,accompanied by limited crustal contamination and various degree of fractional crystallisation during magma emplacement.The Early Cretaceous magmatism and related mineralization were formed in a post-orogenic tectonic setting that attributed to the closure of the Mongol-Okhotsk Ocean.Pb isotopic data for the various rock units in the study area indicate that the Mesozoic magma source contributed substantial Pb,Zn,and Ag to the Hua’aobaote deposit.展开更多
In this study, we present zircon U-Pb ages, whole-rock geochemical data and Hf isotopic compositions for the Meiguifeng and Arxan plutons in Xing’an Massif, Great Xing’an Range, which can provide important informati...In this study, we present zircon U-Pb ages, whole-rock geochemical data and Hf isotopic compositions for the Meiguifeng and Arxan plutons in Xing’an Massif, Great Xing’an Range, which can provide important information in deciphering both Mesozoic magmatism and tectonic evolution of NE China. The zircon U-Pb dating results indicate that alkali feldspar granite from Meiguifeng pluton was emplaced at ~145 to 137 Ma, and granite porphyry of Arxan pluton was formed at ~129 Ma. The Meiguifeng and Arxan plutons have similar geochemical features, which are characterized by high silica, total alkalis, differentiation index, with low P2O5, CaO, MgO, TFe2O3 contents. They belong to high-K calc-alkaline series, and show weakly peraluminous characteristics. The Meiguifeng and Arxan plutons are both enriched in LREEs and LILEs(e.g., Rb, Th, U and K), and depleted in HREEs and HFSEs(e.g., Nb, Ta and Ti). Combined with the petrological and geochemical features, the Meiguifeng and Arxan plutons show highly fractionated I-type granite affinity. Moreover, the Meiguifeng and Arxan plutons may share a common or similar magma source, and they were probably generated by partial melting of Neoproterozoic high-K basaltic crust. Meanwhile, plagioclase, K-feldspar, biotite, apatite, monazite, allanite and Ti-bearing phases fractionated from the magma during formation of Meiguifeng and Arxan plutons. Combined with spatial distribution and temporal evolution, we assume that the generation of Early Cretaceous Meiguifeng and Arxan plutons in Great Xing’an Range was closely related to the break-off of Mudanjiang oceanic plate. Furthermore, the Mudanjiang Ocean was probably a branch of Paleo-Pacific Ocean.展开更多
Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused iss...Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused issue of geological research.展开更多
The Great Xing’an Range(GXAR)is one of the most important metallogenic belts in China.Previous study has shown that porphyry Cu-Mo deposit distributed in the northern Great Xing’an Range formed mainly in two stages:...The Great Xing’an Range(GXAR)is one of the most important metallogenic belts in China.Previous study has shown that porphyry Cu-Mo deposit distributed in the northern Great Xing’an Range formed mainly in two stages:(1)Early Ordovician,such as Duobaoshan and Tongshan deposits(Liu et al.,2017);2)Triassic-Early Jurassic,including Wunugetushan,Taipingchuan and Badaguan deposits(Tang et al.,2016).In recent years,two potential porphyry Cu-Mo deposits,Huoluotai and Xiaokele,were discovered in the Erguna Block,northern GXAR(Figs.1a–b).However,the ore formation ages and regional metallogenic regularity are ambiguous due to the lack of isotopic ages.Two zircon U-Pb ages from the ore-causative granites were reported in this paper,with the aims to constrain the metallogenic ages and provide evidence for study of the regional metallogenic regularity and ore prospect prediction.展开更多
The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type de...The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type deposits, porphyry type deposits and hydrothermal vein type deposits. Fluid inclusion assemblages of different types of deposits are quite different, which represent the complexities of metallogenic process and formation mechanism. CH4 and CO2 have been detected in fluid inclusions from some of deposits, indicating that the ore-forming fluids are affected by materials of Permian strata. Hydrogen and oxygen isotope data from ore minerals and associated gangue minerals indicate that the initial ore fluids were dominated by magmatic waters, some of which had clearly exchanged oxygen with wall rocks during their passage through the strata. The narrow range for the δ34S values presumably reflects the corresponding uniformity of the ore forming fluids, and these δ34S values have been interpreted to reflect magmatic sources for the sulfur. The comparation between lead isotope ratios of ore minerals and different geological units’ also reveals that deeply seated magma has been a significant source of lead in the ores.展开更多
The southern Great Xing'an Range is the most critical Sn-polymetallic metallogenic belt in northeast China.However,the tectonic setting of the Early Cretaceous magmatic-metallogenic”flare-up“event remains uncert...The southern Great Xing'an Range is the most critical Sn-polymetallic metallogenic belt in northeast China.However,the tectonic setting of the Early Cretaceous magmatic-metallogenic”flare-up“event remains uncertain.This paper presents an integrated study on the occurrence,petrology,zircon U-Pb ages,whole-rock geochemistry,and in situ zircon Hf isotopes for Wenduerchagan granites of Xi Ujimqin Banner,central-eastern Inner Mongolia.These granites consist primarily of granite porphyry(with ages of 137±1 Ma and 138±1 Ma)and(porphyritic)alkali feldspar granite(with an age of 141±2 Ma),corresponding to the early Early Cretaceous.They are A-type granites characterized by high silicon,alkali,and TFeO/MgO contents while being depleted of Ba,Nb,Ta,Sr,P,and Ti.They show right-dipping trend rare-earth element distribution characteristics with negative Eu anomalies(Eu/Eu^(*)=0.01-0.20)and weak heavy rare-earth element fractionation((Gd/Yb)_(N)=0.77-2.30).They demonstrate homogeneous zircon Hf isotopic compositions(positiveε_(Hf)(t)values from+5.3 to+7.1 and young two-stage Hf model ages of 851-742 Ma)and high zircon saturation temperatures(av.810℃).These geochemical characteristics indicate that Wenduerchagan granites originated from the partial melting of juvenile crust under high-temperature and low-pressure conditions.Wenduerchagan granites most likely formed in a post-collisional compression-extension transition regime caused by the closure of the Mongol-Okhotsk Ocean,when combined with regional geology.Such a transition regime can probably be attributed to the upwelling of the asthenospheric mantle caused by the break-off of a subducted Mongol-Okhotsk oceanic slab.Upwelling asthenospheric mantle provided sufficient energy and favorable tectonic conditions for magmatism and mineralization of the Early Cretaceous.展开更多
Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain th...Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.展开更多
The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intru...The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intrusions are quartz diorite, quartz monzodiorite and granodiorite of high-K caIc-alkaline series, with minor aspects of shoshonite series. Their SiO2 and A1203 contents range from 61.37% to 66.59% and 15.35% to 17.06%, respectively. The MgO content ranges from 2.02 % to 3.47 %, with Mg# indices of 44-59. The (La/Yb)N and Eu/Eu* values range from 16.85 to 81.73 and 0.68 to 0.93, respectively, showing strong differentiation rare earth element (REE) patterns similar to those of adakites. The rocks are enriched in Ba, Sr and light REE (LREE), obviously depleted in Nb and Ta, slightly depleted in Rb and Ti, and poor in Yb and Y, with Yb and Y contents of 0.31-1.32 ppm and 4.32-12.07 ppm, respectively. As indicated by Sr/Y ratios of 67.74-220.60, the rocks are characterized by low-Y and high-Sr contents, which characterize the adakites in the world. Holistically, geochemical tracers suggest that the interested intrusions are adakitic rocks. Given that the Paleo- Asian Ocean and Mongol-Okhotsk Ocean were closed in the Late Paleozoic and Permian-Middle Jurassic, respectively, the interested intrusions should be formed by partial melting of delaminated crust, which had been thickened during collisional orogeny between the Siberian and Mongolian- Sinokorean continents.展开更多
Zircon LA-ICP-MS U-Pb geochronology of Huoluotai granite in the studied area shows that the weighted mean age of the rock is 148.12±0.85 Ma, which is of Early Cretaceous. The composition of elementary geochemistr...Zircon LA-ICP-MS U-Pb geochronology of Huoluotai granite in the studied area shows that the weighted mean age of the rock is 148.12±0.85 Ma, which is of Early Cretaceous. The composition of elementary geochemistry indicates that the granite has high content of SiO2(66.53%--68.92%), K2O+Na2O(8.80%--9.02%) and Al2O3 (15.16%--16.09%), but low MgO(0.72%--0.91%) and Mg^#(23.59-29.51). The aluminum saturation index(A/CNK) is 0.87-0.95, with high Sr content of(466.00-688.00)×10^-6 and low Y of(4.65-6.22)×10^-6. It is indicated that the granite is a set of adakitic rocks with the characteristics of high-K calc-alkaline series. Fraction of light and heavy rare earth elements is obvious, with(La/Yb)N=58.22--117.91, and anomaly of Eu is feeble(δEu=0.83--0.99). The samples are also enriched in light rare earth elements and large ion elements(Rb, K), depleted in heavy earth elements and high field strength elements(Nb,Ti, P, Zr). Combined with the characteristics of regional tectonic evolution, it is suggested that the fine granite originated from the partial melting of the thickened lower crust, which should be related to the collision compression orogeny after the closure of the Mongolia-Okhotsk Ocean.展开更多
A method of multi-spectral analysis is used to study the spectral characteristics of surface and upper-level meteorological elements over the Great Wall Station (62°12'S, 58°57'W), Antarctica and the...A method of multi-spectral analysis is used to study the spectral characteristics of surface and upper-level meteorological elements over the Great Wall Station (62°12'S, 58°57'W), Antarctica and their phasecorrelation, propagation of mean oscillation at 500hPa level in the Southern Hemisphere and their corresponding synoptic sense. the results are summed up as follows: 1. Over the sub-Antatctic zone, as in the Northern Hemisphere there generally exist quasi-weekly oscillation and quasi-biweekly oscillation. In different seasons the oscillations of meteorological elements are different: in winter season quasi-biweekly oscillation is dominant, while in summer season quasi-weekly oscillation is dominant. 2. From the Earth's surface to the lower stratosphere there is a distinct quasi-weekly oscillation at each isobaric surface, but the most intense oscillation appears at 200-300hPa, and the oscillations of height and temperature are propagated downward. 3. Both in winter and summer seasons the quasi-biweekly oscillation are propagated from west to east, and the mean velocity of its propagation is about 7-17 longtitude / day. 4. The quasi-biweekly oscillation and the quasi-weekly oscillation over the sub - Antarctic zone are closely related to the activity and intensity variation of polar vortex at 500hPa, while at 1000hPa they reflect an interaction between the circumpolar depression and the sub-tropical high. The quasi-biweekly oscillation may be a reflection of inherent oscillation of the polar vortex, where as the quasi-weekly oscillation is a result of forced oscillation by external disturbance.A large number of calculations and analysis made reveals the features of medium-range oscillation over the sub-Antarctic zone. The results are of significance for understanding the behaviour of synoptic dynamics and making the weather forecast.This work is supported by National Committee for Antarctic Research.展开更多
Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to ...Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.展开更多
Extracts are important components of fuels. Fatty-extracts with high heating value (HV) are hypothe- sized by researchers as positively related to the HV of fuels. The Soxhlet extractor is typically used to extract ...Extracts are important components of fuels. Fatty-extracts with high heating value (HV) are hypothe- sized by researchers as positively related to the HV of fuels. The Soxhlet extractor is typically used to extract fatty-extracts but it has shortcomings, including long processing time (8-10 h) and the requirement for large amounts of organic solvent. Supercritical extraction is an alternate and useful technique for extraction of natural products. However, published studies rarely discuss the relationship between extracts and HV. In this study, we assessed the supercritical extracts (SUE) of forest fuels in the Great Xing'an Mountains. Our results indicated that the optimum conditions for extraction of SuEs were 40-60 mesh, 40-50 MPa, 45℃, 80 min and a CO2 flow rate of 1.5-2.0 dm3/min. The Soxhlet extracts contents and the SuE contents were all related to HV. However, R2 of the coniferous samples (0.8499) and needle samples (0.9722) demonstrated that the correlation between HV and the SuE content was closer. We conclude that supercritical fatty-extracts provide a useful index of the HV of fuels, especially coniferous fuels. SuE data can be used in fire management, for example to estimate the rate of fire spread or fire intensity.展开更多
Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples we...Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples were collected from the Great Xing'an Mountains, China. Their taxonomic characteristics and habitats were described to provide new information on the biodiversity of chrysophycean stomatocysts. As is common with many morphotypes, their biological affinities remain unknown.展开更多
Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing'an Range(SGXR),NE China.Based on previously published geochronology and zircon Hf-isoto...Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing'an Range(SGXR),NE China.Based on previously published geochronology and zircon Hf-isotope data,Hf isotope mapping is undertaken to improve our understanding of crustal architecture and its controls on ore deposits.The ore-related Early Cretaceous granitoids were sourced predominantly from juvenile crust,with the involvement of variable proportions of ancient crustal materials.The crustal architecture,as inferred from Hf isotopic contour maps,indicates two distinct Hf isotopic domains in SGXR,including(1)a higher-ε_(Hf)(+7 to+11)juvenile crust containing minor ancient crustal material,and(2)a lower-ε_(Hf)(+2 to+6)juvenile crust containing a greater proportion of ancient crustal materials.The Hf isotopic maps identify links between crustal architecture and regional metallogeny.Copper deposits and other deposits with significant Cu production are restricted mainly to the higher-ε_(Hf)juvenile crustal regions in the northern and eastern SGXR.Deposits dominated by other metals(e.g.,Mo,Sn,W,Pb,Zn,and Ag)occur mainly in the lower-ε_(Hf)juvenile crustal regions in the southern and western SGXR.Interaction between juvenile crust-derived melts and ancient crustal components played an important role on the distribution of various ore metals.展开更多
Late Mesozoic granitoids are widespread in the Great Xing’an Range(GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there ...Late Mesozoic granitoids are widespread in the Great Xing’an Range(GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there have been two dominant models proposed, subduction and thermal erosion. This study discusses the geodynamic mechanisms from a new perspective on ages of the granitoids and fractal dimensions of their shape. Our results show that granitoids become gradually older from South GXR to North GXR to Erguna Block(EB) in the Jurassic, and opposite in the Cretaceous. The fractal dimensions of the Perimeter-area model(DAP) exhibit the same features. The values of DAP are smaller from South GXR(0.673 1) to North GXR(0.628 0) to EB(0.607 9) in the Jurassic, and larger from South GXR(0.609 6) to North GXR(0.630 2) to EB(0.639 9) in the Cretaceous. This implies that the geometrical irregularities of the granitoids are shaped by subduction rather than thermal erosion. These spatial variations could be best explained by the subduction of the Pacific Plate and consequent granitoid magmatism in the Late Mesozoic, thus providing a new fractal evidence for Pacific Plate subduction mechanism and opening a new possibility method for studing plate movement.展开更多
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金supported by the State Key Program of National Natural Science of China(grant no.40739905)Special Projects of Investigation and Evaluation of Countrywide Strategic Petroleum Area Selection(grant no.XQ-2007-07)+1 种基金Science and Technology Project of Sinopec(grant no.GO800-06)the Fund for Basic Scientific Research of the Institute of Geology,Chinese Academy of Geological Sciences(grant no.J0920)
文摘Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274-275 Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95-11.29 wt% and 7.32- 12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophfle elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya'ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.
基金supported by the National Natural Science Foundation of China (Grant No. 41872234 and 41340024)Self-determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources (Grant No. DBYZZ-18-08)Graduate Innovation Fund of Jilin University
文摘A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686-930 ppm) and HREE contents, low Y(11.9-19.8 ppm) and Yb(1.08-1.52 ppm) contents, and they therefore have high Sr/Y(42-63) and La/Yb(24-36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K2O/Na2O ratios(0.57-0.81), low Mg O contents(0.77-3.06 wt%), low Mg# value(17-49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.
基金financially supported by China Geological Survey Project (Grant Number: DD20190039-01, DD20160048-01)the Fundamental Research Funds for the Central Universities (Grant Number: N160104003)
文摘The Zhalantun terrane from the Xing’an massif, northeast China, was used to be considered as Proterozoic basements. However, amounts of detrital zircon ages from the meta-sedimentary rocks deny the existence of Precambrian basements recently. Notably, magmatic rocks were barely reported to limit the exact ages of the Zhalantun basements. In this study, we collected rhyolite, gabbro and quartz diorite for zircon in-situ U-Pb isotopic dating, which yield crystallization ages of ~505 Ma, ~447 Ma and ~125 Ma, respectively. Muscovite schist and siltstone define maximum depositional ages of ~499 Ma and ~489 Ma, respectively. Additionally, these dated supracrustal rocks and plutons also yield ancient detrital/xenocryst zircon ages of ~600-1000 Ma, ~1600-2220 Ma, ~2400 Ma, ~2600-2860 Ma. Based on the whole-rock major and trace element compositions, the ~505 Ma rhyolites display high SiO2 and alkaline contents, low Fe2O3T, TiO2 and Al2O3, and relatively high Mg O and Mg#, which exhibit calc-alkaline characteristics. These rhyolites yield fractionated REE patterns and negative Nb, Ta, Ti, Sr, P and Eu anomalies and positive Zr anomalies. The geochemistry, petrology and Lu-Hf isotopes imply that rhyolites were derived from the partial melting of continental basalt induced by upwelling of sub-arc mantle magmas, and then experienced fractional crystallization of plagioclase, which points to a continental arc regime. The ~447 Ma gabbros exhibit low Si O2 and alkaline contents, high Fe2 O3 T, Ti O2, Mg O and Mg#. They show minor depletions of La and Ce, flat MREE and HREE patterns, and negative Nb, Ta, Zr and Hf anomalies. Both sub-arc mantle and N-MORB-like mantle were involved in the formation of the gabbros, indicative of a probable back-arc basin tectonic setting. Given that, the previously believed Proterozoic supracrustal rocks and several plutons from the Zhalantun Precambrian basements were proved to be Paleozoic to Mesozoic rocks, among which these Paleozoic magmatic rocks were generally related to subduction regime. So far, none Proterozoic rocks have been identified from the Zhalantun Precambrian basement, though some ~600-3210 Ma ancient detrital/xenocryst zircons were reported. Combined with ancient zircon ages and newly reported ~2.5 Ga and ~1.8 Ga granites from the south of the Zhalantun, therefore, the Precambrian rocks probably once exposed in the Zhalantun while they were re-worked and consumed during later long tectonic evolutionary history, resulting in absence of Precambrian rocks in the Zhalantun.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972312,41672329)the National Key Research and Development Project of China(Grant No.2016YFC0600509)the Project of China Geological Survey(Grant No.1212011120341)。
文摘The Hua’aobaote Pb-Zn-Ag Polymetallic orefield is situated in the southern section of the Great Xing’an Range(GXAR),which has experienced extensive magmatism.Since the Paleozoic,there are two stages of magmatism in Hua’aobaote orefield occurred in the Paleozoic and Mesozoic.The Mesozoic magmatism is of great significance for the PbZn-Ag Polymetallic mineralization in Hua’aobaote orefield.In this study,new geochemical data was obtained to discuss the timing and petrogenesis of the magmatic rocks and its geodynamic and metallogenic significance.Zircon U-Pb ages reveal that the felsic igneous rocks from the Hua’aobaote orefield were formed in the Early Permian(294.8±3.2 Ma)and Early Cretaceous(132.6±1.4 Ma).Geochemically,the Early Permian granodiorite porphyrite is characterized by high Sr/Y(42-63)ratios and Mg^(#)(62.24-70.74)values and low heavy rare earth element(HREE)(5.09-6.79 ppm)contents.The granodiorite porphyrite is also characterized by depleted Sr-Nd initial isotopic signatures[ε_(Nd)(t)=5.91-7.59,(^(87)Sr/^(86)Sr)i=0.7029-0.7030],exhibiting adakitic characteristics.The Early Cretaceous granite porphyry and rhyolite are A-type felsic igneous rocks,and demonstrate high SiO_(2),Na_(2)O+K_(2)O and rare earth element(REE)contents,low CaO and MgO contents,low(^(87)Sr/^(86)Sr)i ratios(0.7044-0.7058),and positive ε_(Nd)(t)values(2.57-4.65).Whole-rock Pb isotopic compositions in granodiorite porphyrite are:206Pb/204Pb=17.631-18.149,^(207)Pb/^(204)Pb=15.422-15.450,and ^(208)Pb/^(204)Pb=37.325-37.729.The granite porphyry and rhyolite have initial ^(206)Pb/^(204)Pb,^(207)Pb/^(204)Pb,and ^(208)Pb/^(204)Pb ratios of 18.106-19.309,15.489-15.539,and 37.821-38.05,respectively.Sr-Nd-Pb isotopic evidence suggests that the Early Permian granodiorite porphyrite is likely to derive from slab melts and modified by peridotitic mantle wedge in the subduction tectonic setting of the Paleo-Asian Ocean.The Early Cretaceous A-type felsic igneous rocks were derived from juvenile lower crust,accompanied by limited crustal contamination and various degree of fractional crystallisation during magma emplacement.The Early Cretaceous magmatism and related mineralization were formed in a post-orogenic tectonic setting that attributed to the closure of the Mongol-Okhotsk Ocean.Pb isotopic data for the various rock units in the study area indicate that the Mesozoic magma source contributed substantial Pb,Zn,and Ag to the Hua’aobaote deposit.
基金financially supported by the National Key R&D program of China (2016YFC0600403)
文摘In this study, we present zircon U-Pb ages, whole-rock geochemical data and Hf isotopic compositions for the Meiguifeng and Arxan plutons in Xing’an Massif, Great Xing’an Range, which can provide important information in deciphering both Mesozoic magmatism and tectonic evolution of NE China. The zircon U-Pb dating results indicate that alkali feldspar granite from Meiguifeng pluton was emplaced at ~145 to 137 Ma, and granite porphyry of Arxan pluton was formed at ~129 Ma. The Meiguifeng and Arxan plutons have similar geochemical features, which are characterized by high silica, total alkalis, differentiation index, with low P2O5, CaO, MgO, TFe2O3 contents. They belong to high-K calc-alkaline series, and show weakly peraluminous characteristics. The Meiguifeng and Arxan plutons are both enriched in LREEs and LILEs(e.g., Rb, Th, U and K), and depleted in HREEs and HFSEs(e.g., Nb, Ta and Ti). Combined with the petrological and geochemical features, the Meiguifeng and Arxan plutons show highly fractionated I-type granite affinity. Moreover, the Meiguifeng and Arxan plutons may share a common or similar magma source, and they were probably generated by partial melting of Neoproterozoic high-K basaltic crust. Meanwhile, plagioclase, K-feldspar, biotite, apatite, monazite, allanite and Ti-bearing phases fractionated from the magma during formation of Meiguifeng and Arxan plutons. Combined with spatial distribution and temporal evolution, we assume that the generation of Early Cretaceous Meiguifeng and Arxan plutons in Great Xing’an Range was closely related to the break-off of Mudanjiang oceanic plate. Furthermore, the Mudanjiang Ocean was probably a branch of Paleo-Pacific Ocean.
基金financially supported by the National Natural Science Foundation of China(grant No.41302061)
文摘Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
基金financially supported by the National Nature Science Foundation of China(grants No.41340024 and 41602209)
文摘Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused issue of geological research.
基金supported by the Land Research Project of Heilongjiang Province(grant No.201701)Innovation Fund of Heilongjiang Institute of Geological Survey(grant No.HDDK201806)
文摘The Great Xing’an Range(GXAR)is one of the most important metallogenic belts in China.Previous study has shown that porphyry Cu-Mo deposit distributed in the northern Great Xing’an Range formed mainly in two stages:(1)Early Ordovician,such as Duobaoshan and Tongshan deposits(Liu et al.,2017);2)Triassic-Early Jurassic,including Wunugetushan,Taipingchuan and Badaguan deposits(Tang et al.,2016).In recent years,two potential porphyry Cu-Mo deposits,Huoluotai and Xiaokele,were discovered in the Erguna Block,northern GXAR(Figs.1a–b).However,the ore formation ages and regional metallogenic regularity are ambiguous due to the lack of isotopic ages.Two zircon U-Pb ages from the ore-causative granites were reported in this paper,with the aims to constrain the metallogenic ages and provide evidence for study of the regional metallogenic regularity and ore prospect prediction.
基金supported by Key Discipline Construction Projects of Institute of Disaster Prevention (Quaternary Geology)Prospecting Projects of National Important Mineral Concentration Areas of Development Research Center of China Geological Survey (0747-1861SITCN149)
文摘The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type deposits, porphyry type deposits and hydrothermal vein type deposits. Fluid inclusion assemblages of different types of deposits are quite different, which represent the complexities of metallogenic process and formation mechanism. CH4 and CO2 have been detected in fluid inclusions from some of deposits, indicating that the ore-forming fluids are affected by materials of Permian strata. Hydrogen and oxygen isotope data from ore minerals and associated gangue minerals indicate that the initial ore fluids were dominated by magmatic waters, some of which had clearly exchanged oxygen with wall rocks during their passage through the strata. The narrow range for the δ34S values presumably reflects the corresponding uniformity of the ore forming fluids, and these δ34S values have been interpreted to reflect magmatic sources for the sulfur. The comparation between lead isotope ratios of ore minerals and different geological units’ also reveals that deeply seated magma has been a significant source of lead in the ores.
基金financial support from the National Natural Science Foundation of China(Grant Nos.41802222 and 42002102)the China Geological Survey Program(Grant Nos.1212011220453,DD20190570,DD20221692,DD20230053 and DD20230355)+1 种基金the Key R&D and Promotion Projects in Henan Province(Grant No.212102310030)the Open Fund of Hubei Key Laboratory of Resources and Eco-Environment Geology(Grant No.KJ2022-35)。
文摘The southern Great Xing'an Range is the most critical Sn-polymetallic metallogenic belt in northeast China.However,the tectonic setting of the Early Cretaceous magmatic-metallogenic”flare-up“event remains uncertain.This paper presents an integrated study on the occurrence,petrology,zircon U-Pb ages,whole-rock geochemistry,and in situ zircon Hf isotopes for Wenduerchagan granites of Xi Ujimqin Banner,central-eastern Inner Mongolia.These granites consist primarily of granite porphyry(with ages of 137±1 Ma and 138±1 Ma)and(porphyritic)alkali feldspar granite(with an age of 141±2 Ma),corresponding to the early Early Cretaceous.They are A-type granites characterized by high silicon,alkali,and TFeO/MgO contents while being depleted of Ba,Nb,Ta,Sr,P,and Ti.They show right-dipping trend rare-earth element distribution characteristics with negative Eu anomalies(Eu/Eu^(*)=0.01-0.20)and weak heavy rare-earth element fractionation((Gd/Yb)_(N)=0.77-2.30).They demonstrate homogeneous zircon Hf isotopic compositions(positiveε_(Hf)(t)values from+5.3 to+7.1 and young two-stage Hf model ages of 851-742 Ma)and high zircon saturation temperatures(av.810℃).These geochemical characteristics indicate that Wenduerchagan granites originated from the partial melting of juvenile crust under high-temperature and low-pressure conditions.Wenduerchagan granites most likely formed in a post-collisional compression-extension transition regime caused by the closure of the Mongol-Okhotsk Ocean,when combined with regional geology.Such a transition regime can probably be attributed to the upwelling of the asthenospheric mantle caused by the break-off of a subducted Mongol-Okhotsk oceanic slab.Upwelling asthenospheric mantle provided sufficient energy and favorable tectonic conditions for magmatism and mineralization of the Early Cretaceous.
基金Supported by Project of National Natural Science Foundation of China(No.41872234)。
文摘Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.
基金supported by the Major State Basic Research Program of People's Republic of China (Grant Nos.2006CB403508 and 2007CB411303)the National Natural Science Foundation of China(Nos. 40772055 and 40425006)+1 种基金National Key Technology R&D Program(No.2007BAB25B03)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intrusions are quartz diorite, quartz monzodiorite and granodiorite of high-K caIc-alkaline series, with minor aspects of shoshonite series. Their SiO2 and A1203 contents range from 61.37% to 66.59% and 15.35% to 17.06%, respectively. The MgO content ranges from 2.02 % to 3.47 %, with Mg# indices of 44-59. The (La/Yb)N and Eu/Eu* values range from 16.85 to 81.73 and 0.68 to 0.93, respectively, showing strong differentiation rare earth element (REE) patterns similar to those of adakites. The rocks are enriched in Ba, Sr and light REE (LREE), obviously depleted in Nb and Ta, slightly depleted in Rb and Ti, and poor in Yb and Y, with Yb and Y contents of 0.31-1.32 ppm and 4.32-12.07 ppm, respectively. As indicated by Sr/Y ratios of 67.74-220.60, the rocks are characterized by low-Y and high-Sr contents, which characterize the adakites in the world. Holistically, geochemical tracers suggest that the interested intrusions are adakitic rocks. Given that the Paleo- Asian Ocean and Mongol-Okhotsk Ocean were closed in the Late Paleozoic and Permian-Middle Jurassic, respectively, the interested intrusions should be formed by partial melting of delaminated crust, which had been thickened during collisional orogeny between the Siberian and Mongolian- Sinokorean continents.
基金Supported by Project of China Geological Survey(No.1212011085485)
文摘Zircon LA-ICP-MS U-Pb geochronology of Huoluotai granite in the studied area shows that the weighted mean age of the rock is 148.12±0.85 Ma, which is of Early Cretaceous. The composition of elementary geochemistry indicates that the granite has high content of SiO2(66.53%--68.92%), K2O+Na2O(8.80%--9.02%) and Al2O3 (15.16%--16.09%), but low MgO(0.72%--0.91%) and Mg^#(23.59-29.51). The aluminum saturation index(A/CNK) is 0.87-0.95, with high Sr content of(466.00-688.00)×10^-6 and low Y of(4.65-6.22)×10^-6. It is indicated that the granite is a set of adakitic rocks with the characteristics of high-K calc-alkaline series. Fraction of light and heavy rare earth elements is obvious, with(La/Yb)N=58.22--117.91, and anomaly of Eu is feeble(δEu=0.83--0.99). The samples are also enriched in light rare earth elements and large ion elements(Rb, K), depleted in heavy earth elements and high field strength elements(Nb,Ti, P, Zr). Combined with the characteristics of regional tectonic evolution, it is suggested that the fine granite originated from the partial melting of the thickened lower crust, which should be related to the collision compression orogeny after the closure of the Mongolia-Okhotsk Ocean.
文摘A method of multi-spectral analysis is used to study the spectral characteristics of surface and upper-level meteorological elements over the Great Wall Station (62°12'S, 58°57'W), Antarctica and their phasecorrelation, propagation of mean oscillation at 500hPa level in the Southern Hemisphere and their corresponding synoptic sense. the results are summed up as follows: 1. Over the sub-Antatctic zone, as in the Northern Hemisphere there generally exist quasi-weekly oscillation and quasi-biweekly oscillation. In different seasons the oscillations of meteorological elements are different: in winter season quasi-biweekly oscillation is dominant, while in summer season quasi-weekly oscillation is dominant. 2. From the Earth's surface to the lower stratosphere there is a distinct quasi-weekly oscillation at each isobaric surface, but the most intense oscillation appears at 200-300hPa, and the oscillations of height and temperature are propagated downward. 3. Both in winter and summer seasons the quasi-biweekly oscillation are propagated from west to east, and the mean velocity of its propagation is about 7-17 longtitude / day. 4. The quasi-biweekly oscillation and the quasi-weekly oscillation over the sub - Antarctic zone are closely related to the activity and intensity variation of polar vortex at 500hPa, while at 1000hPa they reflect an interaction between the circumpolar depression and the sub-tropical high. The quasi-biweekly oscillation may be a reflection of inherent oscillation of the polar vortex, where as the quasi-weekly oscillation is a result of forced oscillation by external disturbance.A large number of calculations and analysis made reveals the features of medium-range oscillation over the sub-Antarctic zone. The results are of significance for understanding the behaviour of synoptic dynamics and making the weather forecast.This work is supported by National Committee for Antarctic Research.
基金The work was supported by the National Key R&D Program of China(2017YFA0604403).
文摘Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.
基金sponsored by the National Natural Science Foundation of China(Grant number:31170618)the National Key Technologies R&D Program of China(Grant number2011BAD32B05)
文摘Extracts are important components of fuels. Fatty-extracts with high heating value (HV) are hypothe- sized by researchers as positively related to the HV of fuels. The Soxhlet extractor is typically used to extract fatty-extracts but it has shortcomings, including long processing time (8-10 h) and the requirement for large amounts of organic solvent. Supercritical extraction is an alternate and useful technique for extraction of natural products. However, published studies rarely discuss the relationship between extracts and HV. In this study, we assessed the supercritical extracts (SUE) of forest fuels in the Great Xing'an Mountains. Our results indicated that the optimum conditions for extraction of SuEs were 40-60 mesh, 40-50 MPa, 45℃, 80 min and a CO2 flow rate of 1.5-2.0 dm3/min. The Soxhlet extracts contents and the SuE contents were all related to HV. However, R2 of the coniferous samples (0.8499) and needle samples (0.9722) demonstrated that the correlation between HV and the SuE content was closer. We conclude that supercritical fatty-extracts provide a useful index of the HV of fuels, especially coniferous fuels. SuE data can be used in fire management, for example to estimate the rate of fire spread or fire intensity.
基金Supported by the National Natural Science Foundation of China (Nos.31070181, 30870162)the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50401)
文摘Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples were collected from the Great Xing'an Mountains, China. Their taxonomic characteristics and habitats were described to provide new information on the biodiversity of chrysophycean stomatocysts. As is common with many morphotypes, their biological affinities remain unknown.
基金funded by the National Natural Science Foundation of China(No.41903043)China Postdoctoral Science Foundation(No.2018M642948)Program of China Geological Survey Bureau:1:50000 Regional Geological Survey of Tubuqin,Bayar Tuhushuo,Hadayingzi,Alahada,and Yidanjialaga in Inner Mongolia(No.DD20160048-15)。
文摘Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing'an Range(SGXR),NE China.Based on previously published geochronology and zircon Hf-isotope data,Hf isotope mapping is undertaken to improve our understanding of crustal architecture and its controls on ore deposits.The ore-related Early Cretaceous granitoids were sourced predominantly from juvenile crust,with the involvement of variable proportions of ancient crustal materials.The crustal architecture,as inferred from Hf isotopic contour maps,indicates two distinct Hf isotopic domains in SGXR,including(1)a higher-ε_(Hf)(+7 to+11)juvenile crust containing minor ancient crustal material,and(2)a lower-ε_(Hf)(+2 to+6)juvenile crust containing a greater proportion of ancient crustal materials.The Hf isotopic maps identify links between crustal architecture and regional metallogeny.Copper deposits and other deposits with significant Cu production are restricted mainly to the higher-ε_(Hf)juvenile crustal regions in the northern and eastern SGXR.Deposits dominated by other metals(e.g.,Mo,Sn,W,Pb,Zn,and Ag)occur mainly in the lower-ε_(Hf)juvenile crustal regions in the southern and western SGXR.Interaction between juvenile crust-derived melts and ancient crustal components played an important role on the distribution of various ore metals.
基金supported by the National Key R & D Program of China (No. 2016YFC0600501)the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing 295 (No. KLIGIP-2017A03)the National and Nature Science Foundation of China (Nos. 41430320, 41572315)
文摘Late Mesozoic granitoids are widespread in the Great Xing’an Range(GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there have been two dominant models proposed, subduction and thermal erosion. This study discusses the geodynamic mechanisms from a new perspective on ages of the granitoids and fractal dimensions of their shape. Our results show that granitoids become gradually older from South GXR to North GXR to Erguna Block(EB) in the Jurassic, and opposite in the Cretaceous. The fractal dimensions of the Perimeter-area model(DAP) exhibit the same features. The values of DAP are smaller from South GXR(0.673 1) to North GXR(0.628 0) to EB(0.607 9) in the Jurassic, and larger from South GXR(0.609 6) to North GXR(0.630 2) to EB(0.639 9) in the Cretaceous. This implies that the geometrical irregularities of the granitoids are shaped by subduction rather than thermal erosion. These spatial variations could be best explained by the subduction of the Pacific Plate and consequent granitoid magmatism in the Late Mesozoic, thus providing a new fractal evidence for Pacific Plate subduction mechanism and opening a new possibility method for studing plate movement.