Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve...Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.展开更多
Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to ra...Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.展开更多
This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
The nitrogen(N2)-to-ammonia(NH3)fixation driven by renewable energy has an attractive prospect to relieve the global warming and reduce the consumption of fossil fuels.Ideally,photocatalytic,electrochemical,and photoe...The nitrogen(N2)-to-ammonia(NH3)fixation driven by renewable energy has an attractive prospect to relieve the global warming and reduce the consumption of fossil fuels.Ideally,photocatalytic,electrochemical,and photoelectrochemical approaches are developed as the next-generation NH3 synthesis technologies to substitute the Haber–Bosch method.However,the NH3 yield rate of nitrogen reduction reaction(NRR)by green approaches is extremely low,resulting in the current dilemma of NRR and contamination issues.Thus,in this mini review,the past advances on the sustainable NRR are briefly summarized in the three aspects as follows:the selectivity and adjustment of various catalysts,the type of electrolyte/solvent system,and the investigation of reaction conditions.Subsequently,the recent critical activities in the area of sustainable NH3 synthesis are analyzed and discussed deeply,and a perspective for rational and healthy development of this area is provided positively。展开更多
An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environment...An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environmentally benign nanoparticle synthesis in which no toxic chemicals are used in the synthesis protocol.Palladium nanoparticles(Pd Np) are of interest because of their catalytic properties and affinity for hydrogen.Our protocol for the phyto-synthesis of Pd Np under moderate p H and room temperature offers a new means to develop environmentally benign nanoparticles.Solanum trilobatum is enlightened in our present study as it is enriched with phytochemicals to reduce palladium chloride ions.Poly MVA a dietary supplement based on the nontoxic chemotherapeutic lipoic acid-palladium complex(LA-Pd) is been hypothesized as the new paradigm of cancer therapy.Hence forth we successfully conjugated lipoic acid(S-Pd Np-LA) and vitamins(S-Pd Np-Vitamin-LA) to palladium nanoparticles synthesised from Solanum trilobatum leaf extract.These nanoparticles(S-Pd Np,S-Pd Np-LA,S-Pd Np-Vitamin-LA) were characterized with UV-Vis Spectroscopy,SEM and FTIR analysis,which revealed that S-Pd Np are polydisperse and of different morphologies ranging from 60?70 nm(S-Pd Np),65?80 nm(S-Pd Np-LA) and 75?100 nm(S-Pd Np-Vitamin-LA) in size.展开更多
Rare-earth doped upconversion nanophosphors(UCNPs), which convert low energy near-infrared(NIR) photons into high energy photons such as ultraviolet, visible light and NIR light, have found various applications in opt...Rare-earth doped upconversion nanophosphors(UCNPs), which convert low energy near-infrared(NIR) photons into high energy photons such as ultraviolet, visible light and NIR light, have found various applications in optical bioimaging. In this review article, we summarize recent advances in the synthesis and applications of UCNPs achieved by us and other groups in the past few years. The approaches for the synthesis of UCNPs are presented,with an emphasis on the role of green chemistry in the advancement of this field, followed by a focused overview on their latest applications in optical bioimaging from subcellular structures through cells to living animals. Challenges and opportunities for the use of UCNPs in biomedical diagnosis and therapy are discussed.展开更多
Objective:To synthesize silver nanoparticles using silver nitrate by a green technique which involves different compositions of aqueous leaf extracts of Azadirachta indica(neem)and Ocimum sanctum(tulsi).Methods:Their ...Objective:To synthesize silver nanoparticles using silver nitrate by a green technique which involves different compositions of aqueous leaf extracts of Azadirachta indica(neem)and Ocimum sanctum(tulsi).Methods:Their shape and size were determined using transmission electron microscopy and UV-visible spectroscopy.Their antiplasmodial activity was studied using the malarial parasite strain(Plasmodium falciparum,3D7).The parasite strain(3D7)was collected and revived in vitro using Trager and Jensen method in RPMI 1640 medium for 7-8cycles.Half maximal effective concentration values were calculated by nonlinear regression analysis.Results:Transmission electron microscopy results confirmed the formation of silver nanoparticles with size ranging from 4.74-39.32 nm and their size differs by varying the concentrations from 20%to 100%of neem extract in neem and tulsi extracts.It was observed that samples B and C showed half maximum effective concentration of about 0.3μM.Conclusions:It can be easily established that the aqueous leaf extracts of neem and tulsi in combination can be a good source for synthesis of silver nanoparticles with small size possessing appreciable antiplasmodial activity.展开更多
Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green ...Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green method.The XRD result shows that both pure CdS and ZnS and their doped derivatives are of high crystalline with hexagonal packing structure.The average crystalline size of all nanoparticles was calculated using Debye-Scherrer formula.The crystalline size of nanoparticles of pure samples varied with that of the doped sample.The average crystalline sizes of all nanoparticles are found to be in the range of 5.5-2.2 nm for CdS(from pure to doped) and 4.3-3.4 nm for ZnS,respectively.The band gap values obtained from UV-visible spectra are in the range of 3.5-2.1 e V for CdS and 3.3-2.7 e V for ZnS derivatives,respectively.The FTIR spectral data give characteristic peaks for Cd—S,Cu—S,Ag—S and Zn—S bonds and confirm the formation of respective nanoparticles.The peaks corresponding to the microstructural formation are also observed.The FE-SEM images show the granular morphological structure for all the samples.The agglomeration size of the samples in the range of 10-50 nm for CdS:Cu and 50-100 nm for ZnS:Cu is observed.展开更多
The compound sulforaphane (SFN, 1) has been synthesized via a facile and green synthetic strategy based on the modification of previous methods. Because of its high bioactivities and rare content in nature, the pres...The compound sulforaphane (SFN, 1) has been synthesized via a facile and green synthetic strategy based on the modification of previous methods. Because of its high bioactivities and rare content in nature, the present work is of great important significance.展开更多
In the present study,the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus(PA),which acted as both reducing and stabilizing agents.The PA synthesized silver nano...In the present study,the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus(PA),which acted as both reducing and stabilizing agents.The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol(CMC/PVA)biocomposite.The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry,Fourier-transform infrared spectroscopy(FT-IR),dynamic light scattering(DLS),scanning electron microscope(SEM),and X–ray diffraction(XRD).The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44.The surface plasmon resonance of AgNPs,which was determined by UV-vis spectrophotometry,showed the value of 410.00 nm.These results therefore confirmed the reduction Ag+into Ag°and the formation of AgNPs in the medium.The SEM imaging showed that AgNPs was quasi-spherical and monodisperse.The XRD peaks at 33.07°,44.19°,64.58°and 77.47°confirmed the crystalline nature and presence of AgNPs.The CMC/PVA films that incorporated with AgNPs displayed best mechanical strength and morphological properties than the pure CMC/PVA film.The film of CMC/PVA-AgNPs exhibited significant antibacterial activities against Bacillus spizizenii,Staphylococcus aureus,Salmonella typhi and Escherichia Coli.展开更多
The bio-molecules from various plant components and microbial species have been used as potential agents for the synthesis of silver nanoparticles (AgNPs). In spite of a wide range of bio-molecules assisting in the pr...The bio-molecules from various plant components and microbial species have been used as potential agents for the synthesis of silver nanoparticles (AgNPs). In spite of a wide range of bio-molecules assisting in the process, synthesizing stable and widely applicable AgNPs by many researchers still poses a considerable challenge to the researchers. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. More than 100 different biological sources for synthesizing AgNPs are reported in the past decade by various authors. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape and application. Available published information on AgNPs synthesis, effects of various parameters, characterization techniques, properties and their application are summarised and critically discussed in this review.展开更多
A green synthesis method to produce silver nanoneedles was described using shallot and apricot tree gum(ATG).A fast,simple,and low cost method was used to synthesize silver with nanoparticle and nanoneedle shape fro...A green synthesis method to produce silver nanoneedles was described using shallot and apricot tree gum(ATG).A fast,simple,and low cost method was used to synthesize silver with nanoparticle and nanoneedle shape from the silver nitrate solution.Shallot as a reducing agent and apricot tree gum(ATG) as a stabilizer and a capping agent were utilized to reduce and form silver ions into silver atoms with needle and particle shape.Moreover,high crystalline structures of silver nanoparticles(AgNPs) with diameters of 8-20 nm and silver nanoneedles with average diameters of 50-60 nm and lengths of 5-10 μm were consequently synthesized by shallot and the mixture of shallot and ATG.A self-assembly mechanism was proposed to indicate the formation of needle-like structures of spherical Ag NPs via carbon chains of ATG.The results indicate that the presence of ATG with shallot can transfer the reduced Ag NPs into the silver nanoneedle.The findings were characterized using X-ray diffraction(XRD),ultra violet visible(UV-Vis) spectrometry,field emission scanning electron microscopy(FESEM),and transmission electron microscopy(TEM) techniques.展开更多
In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under green...In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under greenhouse conditions.The scanning and transmission electron microscopy(SEM and TEM)and ultra-violet(UV)visible spectroscopy were used to validate and characterize MgO NPs.The crystalline nature of MgONPs was determined using selected area electron diffraction(SAED).MgO NPs triggered substantial antifungal activity against A.dauci when exposed to 50 and 100 mg L^(–1)concentrations but the higher antifungal potential was noticed in 100 mg L^(–1)under invitro conditions.In fungal inoculated plants,a marked decrease in growth,photosynthetic pigments,and an increase in phenol,proline contents,and defense-related enzymes of carrot were seen over control(distilled water).However,foliar application of MgO NPs at 50 and 100 mg L^(–1)resulted in significant improvement of plant growth,photosynthetic pigments,phenol and proline contents,and defense enzymes activity of carrots with and without A.dauci infection.Spraying of MgO NPs at 100 mg L^(–1)had more plant length(17.11%),shoot dry weight(34.38%),plant fresh weight(20.46%),and root dry weight(49.09%)in carrots when challenged with A.dauci over inoculated control.The leaf blight indices and percent disease severity were also reduced in A.dauci inoculated plants when sprayed with MgO NPs.The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.展开更多
The aim of this study was to evaluate the antibacterial and antifungal activities of eco-friendly synthesized silver nanoparticles.The silver nanoparticles were synthesized by biological method using aqueous extract o...The aim of this study was to evaluate the antibacterial and antifungal activities of eco-friendly synthesized silver nanoparticles.The silver nanoparticles were synthesized by biological method using aqueous extract of Abronia villosa.Synthesis of silver nanoparticles was confirmed by color change and characterized using UV-visible spectroscopy,scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDX),dynamic light scattering(DLS),and zeta potential analysis.The SEM analysis revealed the presence of spherical silver nanoparticles of the size range 21 to 33 nm.Synthesized silver nanoparticles were used to evaluate their antibacterial effects at different concentrations(25,50,75 and 100μg/ml)on gram negative and gram positive bacteria.The biggest halo zone was observed at 75 and 100μg/ml concentrations of silver nanoparticles against both gram positive and gram negative bacteria.Antifungal activity of biosynthesized silver nanoparticles was evaluated against seven different phytopathogenic fungi.AgNPs showed high inhibition of radial growth toward all tested fungi.The highest inhibition of fungal growth by AgNPs was recorded against Macrophomina phaseolina(86.06±0.92%).Biosynthesized AgNPs using plant extract are a promising to use safety for various biomedical and agricultural applications.展开更多
A procedure for the green synthesis of silver nanoparticles (AgNPs) using<span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">Cannab...A procedure for the green synthesis of silver nanoparticles (AgNPs) using<span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">Cannabis sativa</span></i><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(hemp plant) as a stabilizing media was developed and antibacterial activity was tested. Within 30 minutes of heating</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the mixture of silver nitrate and hemp extract, the formation of silver nanoparticles took place under the complete absence of a chemical reducing or an additional stabilizing agent. The so-formed AgNPs were characterized using different optical spectroscopy and electron microscopy techniques. The initial formation of AgNPs was established from UV-Vis data based on </span><span style="font-family:Verdana;">surface plasmon resonance (</span><span style="font-family:Verdana;">SPR) of AgNPs at ~417 nm. The exact size, shape,</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and elemental composition of AgNPs </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> established from ESEM images and EDS data.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">The antibacterial activity of these nanoparticles was studied on Gram-positive </span><i><span style="font-family:Verdana;">Staphylococcus aureus</span></i><span style="font-family:Verdana;">, and Gram-negative</span><i><span style="font-family:Verdana;"> Escherichia coli</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">following Disk diffusion and Minimum Inhibitory Concentration (MIC) tests. Results showed that the biosynthesis of silver nanoparticles using hemp extract </span><span style="font-family:Verdana;">could be</span><span style="font-family:Verdana;"> a simple,</span><span>inexpensive, and biocompatible method.</span>展开更多
Green synthesis is an alternative method for obtaining nanoparticles for environmentally friendly purposes. The present work describes the synthesis and characterization of titanium oxide nanoparticles, starting from ...Green synthesis is an alternative method for obtaining nanoparticles for environmentally friendly purposes. The present work describes the synthesis and characterization of titanium oxide nanoparticles, starting from three natural sources: orange peel, hibiscus rosa sinensis and Aloe vera. Titanium (IV) tetrabutoxide in ethanol solution was used as precursor. The methodology used was based on the sol-gel technique, through which TiO<sub>2</sub> nanoparticles were obtained in the anatase phase. The characterization of the nanoparticles was carried out by means of x-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectrophotometry (FTIR), which allowed the identification of a good degree of purity and crystallinity of the samples obtained.展开更多
<span style="font-family:Verdana;">Because of various disadvantages of chemical synthesis processes, these</span><span> </span><span style="font-family:Verdana;">days ...<span style="font-family:Verdana;">Because of various disadvantages of chemical synthesis processes, these</span><span> </span><span style="font-family:Verdana;">days people are attracting towards green synthesis processes as it is devoid of toxic by-products, cost-effective and eco-friendly. In this study, a simple green synthesis method is applied for the synthesis of magnetite (Fe</span><sub><span style="vertical-align:sub;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">O</span><sub><span style="vertical-align:sub;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">) nanoparticles (MNPs) by co-precipitation of FeCl</span><sub><span style="vertical-align:sub;font-family:Verdana;">3·</span></sub><span style="font-family:Verdana;">6H</span><sub><span style="vertical-align:sub;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O and FeSO</span><sub><span style="vertical-align:sub;font-family:Verdana;">4·</span></sub><span style="font-family:Verdana;">7H</span><sub><span style="vertical-align:sub;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O in the molar ratio of 2:1 using </span><span><i></i></span><i><span style="font-family:Verdana;">Azadirachta indica</span><span></span></i><span style="font-family:Verdana;"> leaves extract under nitrogen environment. FTIR, XRD, SEM etc. were used to characterize the synthesized MNPs. Batch adsorption experiments were carried out to determine adsorption equilibrium of As(V) as a function of pH, adsorbent dose, contact time and different initial concentrations. Kinetics results were best describe</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> by pseudo-second order model with rate constant value 0.0052 g/(mg·min). The equilibrium adsorption isotherm was best fitted with Langmuir adsorption isotherm model. The maximum adsorption capacity was found to be 62.89 mg/g at pH 2. MNPs showed </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">high affinity for As(V) and avoids filtration for solid-liquid separation, thus it would be employed as a promising material </span><span style="font-family:Verdana;">for </span><span style="font-family:Verdana;">the removal of As(V) from water.</span>展开更多
The synthesis of nanoparticles by biological methods using microorganisms, enzymes, or plant extracts has been suggested as a possible ecofriendly alternative to chemical and physical methods that involve the use of h...The synthesis of nanoparticles by biological methods using microorganisms, enzymes, or plant extracts has been suggested as a possible ecofriendly alternative to chemical and physical methods that involve the use of harmful reducing agents. Green synthesis of silver nanoparticles (AgNPs) was achieved using Eugenia uniflora ripe fruit extract, which was characterized by phytochemical screening revealing the presence of polyphenols (quinones, flavonoids, and tannins), reducing compounds, and terpenes. These excellent antioxidants reduced silver nitrate to give the AgNPs, which were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and ζ potential analysis. The diameter of the AgNPs ranged from 10.56 ± 1.2 nm to 107.56 ± 5.7 nm. The antibacterial activity of the AgNPs was evaluated using a modification of the Kirby-Bauer technique with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The inhibition halos were 11.12 ± 0.02 mm, 13.96 ± 0.07 mm, and 11.29 ± 0.76 mm, respectively. The synthesis using E. uniflora is an ecofriendly and low cost method of obtaining silver nanoparticles that could be used in health sciences because of their activity against bacteria with antibiotic resistance.展开更多
Light driven, photon mediated green synthesis of silver nano-particles (AgNPs) was carried out using aqueous silver nitrate solution (1 mM) and aqueous extract of almond (Prunus amygdalus). Experiments were carried ou...Light driven, photon mediated green synthesis of silver nano-particles (AgNPs) was carried out using aqueous silver nitrate solution (1 mM) and aqueous extract of almond (Prunus amygdalus). Experiments were carried out in dark, diffused sunlight and direct sunlight to study the influence of light intensity as well as by wrapping the reaction tubes with colored cellophane filters (violet, green, yellow and red) to investigate the effect of light color on AgNP synthesis. It was observed that the violet filter enhanced the AgNPs synthesis appreciably. The FTIR spectroscopic analysis confirmed participation of bio-molecules with hydroxyl and amide groups present in the almond extract as reducing and capping or stabilizing agents, respectively. Dynamic light scattering (DLS) studies revealed the particle size distribution of nano-particles as 2 – 400 nm, and scanning electron microscopy (SEM) confirmed their spherical shape with an average size of about 20 nm. Growth analysis of AgNPs revealed an increase in number of nano-particles with time, whereas their rate of growth decreased gradually. The AgNP suspension was stable even beyond 3 weeks.展开更多
文摘Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.
文摘Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
基金The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017)the Provincial Natural Science Foundation of Hunan(2016JJ1006,2020JJ5044,and 2016TP1009)Australian Research Council(DP180100568 and DP180100731)for financial support of this research.
文摘The nitrogen(N2)-to-ammonia(NH3)fixation driven by renewable energy has an attractive prospect to relieve the global warming and reduce the consumption of fossil fuels.Ideally,photocatalytic,electrochemical,and photoelectrochemical approaches are developed as the next-generation NH3 synthesis technologies to substitute the Haber–Bosch method.However,the NH3 yield rate of nitrogen reduction reaction(NRR)by green approaches is extremely low,resulting in the current dilemma of NRR and contamination issues.Thus,in this mini review,the past advances on the sustainable NRR are briefly summarized in the three aspects as follows:the selectivity and adjustment of various catalysts,the type of electrolyte/solvent system,and the investigation of reaction conditions.Subsequently,the recent critical activities in the area of sustainable NH3 synthesis are analyzed and discussed deeply,and a perspective for rational and healthy development of this area is provided positively。
文摘An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environmentally benign nanoparticle synthesis in which no toxic chemicals are used in the synthesis protocol.Palladium nanoparticles(Pd Np) are of interest because of their catalytic properties and affinity for hydrogen.Our protocol for the phyto-synthesis of Pd Np under moderate p H and room temperature offers a new means to develop environmentally benign nanoparticles.Solanum trilobatum is enlightened in our present study as it is enriched with phytochemicals to reduce palladium chloride ions.Poly MVA a dietary supplement based on the nontoxic chemotherapeutic lipoic acid-palladium complex(LA-Pd) is been hypothesized as the new paradigm of cancer therapy.Hence forth we successfully conjugated lipoic acid(S-Pd Np-LA) and vitamins(S-Pd Np-Vitamin-LA) to palladium nanoparticles synthesised from Solanum trilobatum leaf extract.These nanoparticles(S-Pd Np,S-Pd Np-LA,S-Pd Np-Vitamin-LA) were characterized with UV-Vis Spectroscopy,SEM and FTIR analysis,which revealed that S-Pd Np are polydisperse and of different morphologies ranging from 60?70 nm(S-Pd Np),65?80 nm(S-Pd Np-LA) and 75?100 nm(S-Pd Np-Vitamin-LA) in size.
基金Supported by the National Key Research and Development Program of China(2016YFA0201701/2016YFA0201700)the Beijing Natural Science Foundation(2182051)+2 种基金the National Natural Science Foundation of China(21622601)the Fundamental Research Funds for the Central Universities of China(BUCTRC201601)the "111" project of China(B14004)
文摘Rare-earth doped upconversion nanophosphors(UCNPs), which convert low energy near-infrared(NIR) photons into high energy photons such as ultraviolet, visible light and NIR light, have found various applications in optical bioimaging. In this review article, we summarize recent advances in the synthesis and applications of UCNPs achieved by us and other groups in the past few years. The approaches for the synthesis of UCNPs are presented,with an emphasis on the role of green chemistry in the advancement of this field, followed by a focused overview on their latest applications in optical bioimaging from subcellular structures through cells to living animals. Challenges and opportunities for the use of UCNPs in biomedical diagnosis and therapy are discussed.
基金supported by the Innovation project of the University of Delhi(SVC 311)
文摘Objective:To synthesize silver nanoparticles using silver nitrate by a green technique which involves different compositions of aqueous leaf extracts of Azadirachta indica(neem)and Ocimum sanctum(tulsi).Methods:Their shape and size were determined using transmission electron microscopy and UV-visible spectroscopy.Their antiplasmodial activity was studied using the malarial parasite strain(Plasmodium falciparum,3D7).The parasite strain(3D7)was collected and revived in vitro using Trager and Jensen method in RPMI 1640 medium for 7-8cycles.Half maximal effective concentration values were calculated by nonlinear regression analysis.Results:Transmission electron microscopy results confirmed the formation of silver nanoparticles with size ranging from 4.74-39.32 nm and their size differs by varying the concentrations from 20%to 100%of neem extract in neem and tulsi extracts.It was observed that samples B and C showed half maximum effective concentration of about 0.3μM.Conclusions:It can be easily established that the aqueous leaf extracts of neem and tulsi in combination can be a good source for synthesis of silver nanoparticles with small size possessing appreciable antiplasmodial activity.
文摘Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green method.The XRD result shows that both pure CdS and ZnS and their doped derivatives are of high crystalline with hexagonal packing structure.The average crystalline size of all nanoparticles was calculated using Debye-Scherrer formula.The crystalline size of nanoparticles of pure samples varied with that of the doped sample.The average crystalline sizes of all nanoparticles are found to be in the range of 5.5-2.2 nm for CdS(from pure to doped) and 4.3-3.4 nm for ZnS,respectively.The band gap values obtained from UV-visible spectra are in the range of 3.5-2.1 e V for CdS and 3.3-2.7 e V for ZnS derivatives,respectively.The FTIR spectral data give characteristic peaks for Cd—S,Cu—S,Ag—S and Zn—S bonds and confirm the formation of respective nanoparticles.The peaks corresponding to the microstructural formation are also observed.The FE-SEM images show the granular morphological structure for all the samples.The agglomeration size of the samples in the range of 10-50 nm for CdS:Cu and 50-100 nm for ZnS:Cu is observed.
基金supported by the National Natural Science Foundation of China(No.20472025 and No.20021001).
文摘The compound sulforaphane (SFN, 1) has been synthesized via a facile and green synthetic strategy based on the modification of previous methods. Because of its high bioactivities and rare content in nature, the present work is of great important significance.
基金This research was funded by Nong Lam University Ho Chi Minh City,Vietnam under Grant Code CS-CB19-KH-02.
文摘In the present study,the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus(PA),which acted as both reducing and stabilizing agents.The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol(CMC/PVA)biocomposite.The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry,Fourier-transform infrared spectroscopy(FT-IR),dynamic light scattering(DLS),scanning electron microscope(SEM),and X–ray diffraction(XRD).The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44.The surface plasmon resonance of AgNPs,which was determined by UV-vis spectrophotometry,showed the value of 410.00 nm.These results therefore confirmed the reduction Ag+into Ag°and the formation of AgNPs in the medium.The SEM imaging showed that AgNPs was quasi-spherical and monodisperse.The XRD peaks at 33.07°,44.19°,64.58°and 77.47°confirmed the crystalline nature and presence of AgNPs.The CMC/PVA films that incorporated with AgNPs displayed best mechanical strength and morphological properties than the pure CMC/PVA film.The film of CMC/PVA-AgNPs exhibited significant antibacterial activities against Bacillus spizizenii,Staphylococcus aureus,Salmonella typhi and Escherichia Coli.
文摘The bio-molecules from various plant components and microbial species have been used as potential agents for the synthesis of silver nanoparticles (AgNPs). In spite of a wide range of bio-molecules assisting in the process, synthesizing stable and widely applicable AgNPs by many researchers still poses a considerable challenge to the researchers. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. More than 100 different biological sources for synthesizing AgNPs are reported in the past decade by various authors. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape and application. Available published information on AgNPs synthesis, effects of various parameters, characterization techniques, properties and their application are summarised and critically discussed in this review.
基金supported by the international doctoral fellowship (IDF) scheme from Universiti Teknologi Malaysia
文摘A green synthesis method to produce silver nanoneedles was described using shallot and apricot tree gum(ATG).A fast,simple,and low cost method was used to synthesize silver with nanoparticle and nanoneedle shape from the silver nitrate solution.Shallot as a reducing agent and apricot tree gum(ATG) as a stabilizer and a capping agent were utilized to reduce and form silver ions into silver atoms with needle and particle shape.Moreover,high crystalline structures of silver nanoparticles(AgNPs) with diameters of 8-20 nm and silver nanoneedles with average diameters of 50-60 nm and lengths of 5-10 μm were consequently synthesized by shallot and the mixture of shallot and ATG.A self-assembly mechanism was proposed to indicate the formation of needle-like structures of spherical Ag NPs via carbon chains of ATG.The results indicate that the presence of ATG with shallot can transfer the reduced Ag NPs into the silver nanoneedle.The findings were characterized using X-ray diffraction(XRD),ultra violet visible(UV-Vis) spectrometry,field emission scanning electron microscopy(FESEM),and transmission electron microscopy(TEM) techniques.
基金the Researchers Supporting Project Number(RSP2023R339)at King Saud University,Riyadh,Saudi Arabia。
文摘In this research,green synthesized magnesium oxide nanoparticles(MgO NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under greenhouse conditions.The scanning and transmission electron microscopy(SEM and TEM)and ultra-violet(UV)visible spectroscopy were used to validate and characterize MgO NPs.The crystalline nature of MgONPs was determined using selected area electron diffraction(SAED).MgO NPs triggered substantial antifungal activity against A.dauci when exposed to 50 and 100 mg L^(–1)concentrations but the higher antifungal potential was noticed in 100 mg L^(–1)under invitro conditions.In fungal inoculated plants,a marked decrease in growth,photosynthetic pigments,and an increase in phenol,proline contents,and defense-related enzymes of carrot were seen over control(distilled water).However,foliar application of MgO NPs at 50 and 100 mg L^(–1)resulted in significant improvement of plant growth,photosynthetic pigments,phenol and proline contents,and defense enzymes activity of carrots with and without A.dauci infection.Spraying of MgO NPs at 100 mg L^(–1)had more plant length(17.11%),shoot dry weight(34.38%),plant fresh weight(20.46%),and root dry weight(49.09%)in carrots when challenged with A.dauci over inoculated control.The leaf blight indices and percent disease severity were also reduced in A.dauci inoculated plants when sprayed with MgO NPs.The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.
基金the support of Universidad Autonoma de Baja California.
文摘The aim of this study was to evaluate the antibacterial and antifungal activities of eco-friendly synthesized silver nanoparticles.The silver nanoparticles were synthesized by biological method using aqueous extract of Abronia villosa.Synthesis of silver nanoparticles was confirmed by color change and characterized using UV-visible spectroscopy,scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDX),dynamic light scattering(DLS),and zeta potential analysis.The SEM analysis revealed the presence of spherical silver nanoparticles of the size range 21 to 33 nm.Synthesized silver nanoparticles were used to evaluate their antibacterial effects at different concentrations(25,50,75 and 100μg/ml)on gram negative and gram positive bacteria.The biggest halo zone was observed at 75 and 100μg/ml concentrations of silver nanoparticles against both gram positive and gram negative bacteria.Antifungal activity of biosynthesized silver nanoparticles was evaluated against seven different phytopathogenic fungi.AgNPs showed high inhibition of radial growth toward all tested fungi.The highest inhibition of fungal growth by AgNPs was recorded against Macrophomina phaseolina(86.06±0.92%).Biosynthesized AgNPs using plant extract are a promising to use safety for various biomedical and agricultural applications.
文摘A procedure for the green synthesis of silver nanoparticles (AgNPs) using<span style="font-family:;" "=""> </span><i><span style="font-family:Verdana;">Cannabis sativa</span></i><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(hemp plant) as a stabilizing media was developed and antibacterial activity was tested. Within 30 minutes of heating</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the mixture of silver nitrate and hemp extract, the formation of silver nanoparticles took place under the complete absence of a chemical reducing or an additional stabilizing agent. The so-formed AgNPs were characterized using different optical spectroscopy and electron microscopy techniques. The initial formation of AgNPs was established from UV-Vis data based on </span><span style="font-family:Verdana;">surface plasmon resonance (</span><span style="font-family:Verdana;">SPR) of AgNPs at ~417 nm. The exact size, shape,</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and elemental composition of AgNPs </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> established from ESEM images and EDS data.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">The antibacterial activity of these nanoparticles was studied on Gram-positive </span><i><span style="font-family:Verdana;">Staphylococcus aureus</span></i><span style="font-family:Verdana;">, and Gram-negative</span><i><span style="font-family:Verdana;"> Escherichia coli</span></i></span><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;">following Disk diffusion and Minimum Inhibitory Concentration (MIC) tests. Results showed that the biosynthesis of silver nanoparticles using hemp extract </span><span style="font-family:Verdana;">could be</span><span style="font-family:Verdana;"> a simple,</span><span>inexpensive, and biocompatible method.</span>
文摘Green synthesis is an alternative method for obtaining nanoparticles for environmentally friendly purposes. The present work describes the synthesis and characterization of titanium oxide nanoparticles, starting from three natural sources: orange peel, hibiscus rosa sinensis and Aloe vera. Titanium (IV) tetrabutoxide in ethanol solution was used as precursor. The methodology used was based on the sol-gel technique, through which TiO<sub>2</sub> nanoparticles were obtained in the anatase phase. The characterization of the nanoparticles was carried out by means of x-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectrophotometry (FTIR), which allowed the identification of a good degree of purity and crystallinity of the samples obtained.
文摘<span style="font-family:Verdana;">Because of various disadvantages of chemical synthesis processes, these</span><span> </span><span style="font-family:Verdana;">days people are attracting towards green synthesis processes as it is devoid of toxic by-products, cost-effective and eco-friendly. In this study, a simple green synthesis method is applied for the synthesis of magnetite (Fe</span><sub><span style="vertical-align:sub;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">O</span><sub><span style="vertical-align:sub;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">) nanoparticles (MNPs) by co-precipitation of FeCl</span><sub><span style="vertical-align:sub;font-family:Verdana;">3·</span></sub><span style="font-family:Verdana;">6H</span><sub><span style="vertical-align:sub;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O and FeSO</span><sub><span style="vertical-align:sub;font-family:Verdana;">4·</span></sub><span style="font-family:Verdana;">7H</span><sub><span style="vertical-align:sub;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O in the molar ratio of 2:1 using </span><span><i></i></span><i><span style="font-family:Verdana;">Azadirachta indica</span><span></span></i><span style="font-family:Verdana;"> leaves extract under nitrogen environment. FTIR, XRD, SEM etc. were used to characterize the synthesized MNPs. Batch adsorption experiments were carried out to determine adsorption equilibrium of As(V) as a function of pH, adsorbent dose, contact time and different initial concentrations. Kinetics results were best describe</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> by pseudo-second order model with rate constant value 0.0052 g/(mg·min). The equilibrium adsorption isotherm was best fitted with Langmuir adsorption isotherm model. The maximum adsorption capacity was found to be 62.89 mg/g at pH 2. MNPs showed </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">high affinity for As(V) and avoids filtration for solid-liquid separation, thus it would be employed as a promising material </span><span style="font-family:Verdana;">for </span><span style="font-family:Verdana;">the removal of As(V) from water.</span>
文摘The synthesis of nanoparticles by biological methods using microorganisms, enzymes, or plant extracts has been suggested as a possible ecofriendly alternative to chemical and physical methods that involve the use of harmful reducing agents. Green synthesis of silver nanoparticles (AgNPs) was achieved using Eugenia uniflora ripe fruit extract, which was characterized by phytochemical screening revealing the presence of polyphenols (quinones, flavonoids, and tannins), reducing compounds, and terpenes. These excellent antioxidants reduced silver nitrate to give the AgNPs, which were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and ζ potential analysis. The diameter of the AgNPs ranged from 10.56 ± 1.2 nm to 107.56 ± 5.7 nm. The antibacterial activity of the AgNPs was evaluated using a modification of the Kirby-Bauer technique with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The inhibition halos were 11.12 ± 0.02 mm, 13.96 ± 0.07 mm, and 11.29 ± 0.76 mm, respectively. The synthesis using E. uniflora is an ecofriendly and low cost method of obtaining silver nanoparticles that could be used in health sciences because of their activity against bacteria with antibiotic resistance.
文摘Light driven, photon mediated green synthesis of silver nano-particles (AgNPs) was carried out using aqueous silver nitrate solution (1 mM) and aqueous extract of almond (Prunus amygdalus). Experiments were carried out in dark, diffused sunlight and direct sunlight to study the influence of light intensity as well as by wrapping the reaction tubes with colored cellophane filters (violet, green, yellow and red) to investigate the effect of light color on AgNP synthesis. It was observed that the violet filter enhanced the AgNPs synthesis appreciably. The FTIR spectroscopic analysis confirmed participation of bio-molecules with hydroxyl and amide groups present in the almond extract as reducing and capping or stabilizing agents, respectively. Dynamic light scattering (DLS) studies revealed the particle size distribution of nano-particles as 2 – 400 nm, and scanning electron microscopy (SEM) confirmed their spherical shape with an average size of about 20 nm. Growth analysis of AgNPs revealed an increase in number of nano-particles with time, whereas their rate of growth decreased gradually. The AgNP suspension was stable even beyond 3 weeks.