期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco 被引量:2
1
作者 LIANG Hai FU Li-bo +3 位作者 CHEN Hua ZHOU Guo-peng GAO Song-juan CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1199-1215,共17页
Green manure–crop rotation is a sustainable approach to protect crops against diseases and improve yield.However,the mechanism by which green manuring manipulates the crop-associated microbial community remains to be... Green manure–crop rotation is a sustainable approach to protect crops against diseases and improve yield.However,the mechanism by which green manuring manipulates the crop-associated microbial community remains to be elucidated.In this study,we explored the horizontal processes of bacterial communities in different compartments of the soil–root interface(bulk soil,rhizosphere soil,rhizoplane and endosphere)of tobacco by performing a field experiment including four rotation practices,namely,tobacco rotated with smooth vetch,ryegrass,radish,and winter fallow(without green manure).Results showed that the co-occurrence networks constructed by adjacent compartments of the soil–root interface with green manuring had more edges than without green manuring,indicating dramatic microbial interactions.Green manuring increased the dispersal-niche continuum index between bulk soil and other compartments,indicating that it facilitated the horizontal dispersal of microbes.For the different green manuring practices,the neutral community model explained 24.6–27.6%of detection frequency for bacteria,and at least one compartment under each practice had a normalized stochasticity ratio higher than the 50%boundary point,suggesting that the deterministic and stochastic processes jointly shaped the tobacco microbiome.In conclusion,green manuring generally facilitates bacterial community dispersal across different compartments and enhances potential interactions among adjacent compartments.This study provides empirical evidence for understanding the microbiome assembly under green manure–crop rotation. 展开更多
关键词 green manure TOBACCO rotation practice niche compartment community assembly
下载PDF
Legume Green Manuring Improves Soil Fertility and Plant Growth of Eucalyptus Plantation in South Subtropical China
2
作者 Kongxin Zhu Huili Wang +4 位作者 Zuoyu Qin Jian Tang Xiaojun Deng Jizhao Cao Shunyao Zhuang 《Research in Ecology》 2021年第1期14-21,共8页
Legume green manure is extensively planted to improve soil fertility in crop field.However,the application of legume in Eucalyptus plantation is still limited and depends on site specific and species.Therefore,the obj... Legume green manure is extensively planted to improve soil fertility in crop field.However,the application of legume in Eucalyptus plantation is still limited and depends on site specific and species.Therefore,the objective of this study was to determine the effects of green manure interplantation on soil fertility and plant growth of Eucalyptus plantation in a short term.A field experiment of one year was established to investigate the green manure growth,forest soil nutrients and Eucalyptus plant growth inter-planted with two legume species(Tephrosia candida,TC and Sesbania cannabina,SC)at south subtropical China.Legumes were inter-planted in linear among the tree space of Eucalyptus stand.Result showed that the green manure inter-plantation increased soil organic matter by 9.66%of TC and 18.44%of SC.Soil available nitrogen,phosphorus and potassium were improved significantly by the legume treatments as well.The increment of height and diameter at breast height of Eucalyptus during the experiment was significant in legume treatments.Thus,the timber volume increment was improved significantly by 46.81%of TC and 35.47%of SC compared with the control treatment.Therefore,the inter-plantation of legume green manure under the Eucalyptus plantation is effective to improve soil fertility and tree growth.Such a measure is potential and referenced for the sustainable forest management. 展开更多
关键词 Eucalyptus plantation green manure Legume plant Soil fertility
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
3
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 green manure STRAW MANURE Soil organic carbon Soil quality Crop production Diversified cropping
下载PDF
Legume green manure can intensify the function of chemical nitrogen fertilizer substitution via increasing nitrogen supply and uptake of wheat
4
作者 Jingui Wei Zhilong Fan +5 位作者 Falong Hu Shoufa Mao Fang Yin Qiming Wang Qiang Chai Wen Yin 《The Crop Journal》 SCIE CSCD 2024年第4期1222-1232,共11页
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve... Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake. 展开更多
关键词 Legume green manure Reduced N input WHEAT N uptake and supply Agronomic mechanism
下载PDF
Legume Green Manure and Intercropping for High Biomass Sorghum Production
5
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L. S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第6期605-621,共17页
Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into... Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into high-biomass sorghum (Sorghum bicolor L.) production systems on a Lilbert loamy fine sand recently cultivated after a fertilized bermudagrass [Cynodon dactylon (L.) Pers.] pasture. In this split-split plot design, ‘Dixie’ crimson clover (Trifolium incarnatum L.) and ‘Iron and Clay’ cowpea (Vigna unguiculata L.) were integrated into a high-biomass sorghum production system to evaluate impacts on N concentration, C concentration, and yield of high-biomass sorghum and their impacts on soil total N and soil organic carbon (SOC). Main plots were split into crimson clover green manure (CLGM) and winter fallow (FALL) followed by three sub-plots split into warm-season crop rotations: cowpea green manure (CPGM), cowpea-sorghum intercrop (CPSR), and sorghum monocrop (SORG). Three N fertilizer treatments (0, 45, 90 kg N∙ha−1) were randomized and applied as sub-sub plots. The CLGM increased (P sorghum biomass yield (16.5 t DM∙ha−1) 28% in year three but had no effect in the first two years. The CPSR treatment reduced sorghum yield up to 62% compared to SORG;whereas CPGM increased sorghum yield 56% and 18% the two years following cowpea incorporation. Rate of N fertilizer had no effect on sorghum biomass yield. Decrease in SOC and soil N over time indicated mineralization of organic N and may explain why no N fertilizer response was observed in sorghum biomass yield. Cowpea showed strong potential as a green manure crop but proved to be too competitive for successful intercropping in high-biomass sorghum production systems. 展开更多
关键词 High-Biomass Sorghum Legumes green Manure INTERCROP COWPEA Crimson Clover Soil Organic Carbon Soil Nitrogen
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
6
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C green Manure Deer Browse Forage Cropping Systems
下载PDF
The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China 被引量:3
7
作者 GAO Song-juan LI Shun +1 位作者 ZHOU Guo-peng CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2233-2247,共15页
Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclea... Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclear.Therefore,we combined the datasets from long-term multisite experiments with a meta-analysis approach to quantify the potential of GM to increase the CS and reduce the CF of paddy soils in southern China.Compared with the fallow-rice practice,the GM-rice practice increased the soil C stock at a rate of 1.62 Mg CO_(2)-eq ha^(-1) yr^(-1) and reduced chemical N application by 40%with no loss in the rice yield.The total CF varied from 7.51 to 13.66 Mg CO_(2)-eq ha^(-1) yr^(-1) and was dominated by CH_(4) emissions(60.7-81.3%).GM decreased the indirect CF by 31.4%but increased the direct CH_(4) emissions by 19.6%.In the low and high CH_(4) emission scenarios,the CH_(4) emission factors of GM(EF_(gc))were 5.58 and 21.31%,respectively.The greater soil CS offset the increase in GM-derived CF in the low CH_(4) scenario,but it could not offset the CF increase in the high CH_(4) scenario.A trade-off analysis also showed that GM can simultaneously increase the CS and reduce the total CF of the rice production system when the EF_(gc) was less than 9.20%.The variation in EF_(gc) was mainly regulated by the GM application rates and water management patterns.Determining the appropriate GM application rate and drainage pattern warrant further investigation to optimize the potential of the GM-rice system to increase the CS and reduce the total CF in China. 展开更多
关键词 green manure paddy soil soil carbon sequestration carbon footprint
下载PDF
Effects of Green Manure Rotation on Rice Growth Dynamics and Nitrogen Uptake and Utilization 被引量:3
8
作者 张立进 杨滨娟 +2 位作者 黄国勤 陈洪俊 刘康 《Agricultural Science & Technology》 CAS 2015年第5期962-967,共6页
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr... This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling. 展开更多
关键词 Winter green manure Rice yield Nitrogen uptake and utilization Paddy field
下载PDF
Effects of Green Manure Mixed Cropping Patterns on Physical and Chemical Properties of Soil and Economic Characters of Flue-cured Tobacco 被引量:4
9
作者 陈治锋 邓小华 +2 位作者 周米良 田峰 张明发 《Agricultural Science & Technology》 CAS 2015年第8期1723-1727,共5页
[Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vet... [Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vetch (Vicia gigantea Bge.), perennial ryegrass (Lofium) and rapeseed (Brassica campestris L.) on physi- cal and chemical properties of soil and economic characters of flue-cured tobacco. [Result] (1) Green manure turnover can reduce soil bulk density by 1.08%-8.62%, and the effect of green manure mixed cropping pattern was the best. (2) Green manure turnover also can increase the soil nutrient, soil organic matter, total nitro- gen (N), total phosphorus (P), total potassium (K), alkali-hydrolyzale N, rapidly available P and rapidly available K by 1.44%-6.10%, 0.01-0.12 g/kg, 1.89%- 11.32%, 0.12%-3.56%, 1.06%-11.76%, 0.04%-18.93% and 0.98%-23.12%, respec- tively, and the effect of the monoculture of common vetch was the best.(3) The overall change of soil pH was not obvious.(4)Green manure turnover can increase the yield and output of flue-cured tobacco, and the effect of the monoculture of common vetch was the best. [Conclusion] The monoculture of common vetch can be generalized in the dry land of Xiangxi tobacco-planting areas. 展开更多
关键词 green manure Mixed cropping Soil physical and chemical properties Economic characters of flue-cured tobacco
下载PDF
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:39
10
作者 YANG Zeng-ping ZHENG Sheng-xian +2 位作者 NIE Jun LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1772-1781,共10页
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie... In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases. 展开更多
关键词 green manure organic carbon reddish paddy soil total nitrogen water-stable aggregates
下载PDF
Effects of Long-Term Winter Planted Green Manure on Physical Properties of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:42
11
作者 YANG Zeng-ping XU Ming-gang +4 位作者 ZHENG Sheng-xian NIE Jun GAO Ju-sheng LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期655-664,共10页
Soil physical properties are important indicators of the potential for agricultural production.Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy s... Soil physical properties are important indicators of the potential for agricultural production.Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy soil(Fe-Typic Hapli-Stagnic Anthrosols) under a double cropping system.The common cropping pattern before the study was early-late rice-fallow(winter).The field treatments included rice-rice-fallow(R-R-WF),rice-rice-rape(R-R-RP),rice-rice-Chinese milk vetch(RR-MV),and rice-rice-ryegrass(R-R-RG).The rape,Chinese milk vetch and ryegrass were all incorporated as green manures 15 d before early rice transplanting during the following year.The soil bulk density in all green manure treatments was significantly reduced compared with the winter fallow treatment.Soil porosity with green manure applications was significantly higher than that under the winter fallow.The green manure treatments had higher 0.25-5 mm water stable aggregates and aggregates stabilities in the plow layer(0-15 cm depth) compared with the fallow treatment.The mean weight diameter(MWD) and normalized mean weight diameter(NMWD) of aggregates in the green manure treatment were larger than that with the winter fallow.Soil given green manure retained both a higher water holding capacity in the plow layer soil,and a larger volume of moisture at all matric potentials(-10,-33 and-100 kPa).We conclude that the management of double-rice fields in southern central China should be encouraged to use green manures along with chemical fertilizers to increase SOC content,improve soil physical properties and soil fertility. 展开更多
关键词 long-term experiment soil physical property green manure reddish paddy soil
下载PDF
Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil 被引量:22
12
作者 GAO Song-juan GAO Ju-sheng +4 位作者 CAO Wei-dong ZOU Chun-qin HUANG Jing BAI Jinshun DOU Fu-gen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1852-1860,共9页
Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of ... Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil. 展开更多
关键词 green manure red paddy soil dissolved organic matter ultraviolet-visible spectra Fourier transform infrared spectra
下载PDF
Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China 被引量:7
13
作者 GAO Song-juan CAO Wei-dong +5 位作者 GAO Ju-sheng HUANG Jing BAI Jin-shun ZENG Nao-hua CHANG Dan-na SHIMIZU Katsuyoshi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期959-966,共8页
Dissimilatory Fe(Ⅲ) reduction is an important process in the geochemical cycle of iron in anoxic environment. As the main products of dissimilatory iron reduction, the Fe(Ⅱ) species accumulation could indicate t... Dissimilatory Fe(Ⅲ) reduction is an important process in the geochemical cycle of iron in anoxic environment. As the main products of dissimilatory iron reduction, the Fe(Ⅱ) species accumulation could indicate the reduction ability. The effects of different green manures on Fe(Ⅲ) reduction in paddy soil were explored based on a 31-year rice-rice-winter green manure cropping experiment. Four treatments were involved, i.e., rice-rice-milk vetch (RRV), rice-rice-rape (RRP), rice-rice-ryegrass (RRG) and rice-rice-winter fallow (RRF). Soils were sampled at flowering stage of milk vetch and rape (S1), before transplantation (S2), at tillering (S3), jointing (S4), and mature (S5) stages of the early rice, and after the harvest of the late rice (S6). The contents of TFeHa (HCI-extractable total Fe), Fe(Ⅱ)HCI (HCI-extractable Fe(Ⅱ) species) and Fe(Ⅲ)HCI (HCI- extractable Fe(Ⅲ) species) were measured. The correlations among those Fe species with selected soil environmental factors and the dynamic characteristics of Fe(Ⅱ)HCI accumulation were investigated. The results showed that TFeHc~ in RRF was significantly higher than those in the green manure treatments at most of the sampling stages. Fe(II)Ha increased rapidly after the incorporation of green manures in all treatments and kept rising with the growth of early rice. Fe(Ⅱ)Ha in RRG was quite different from those in other treatments, i.e., it reached the highest at the S2 stage, then increased slowly and became the lowest one at the S4 and S5 stages. Fe(Ⅲ)Ha showed oppositely, and Fe(Ⅱ)HCI/Fe(Ⅲ)HCI performed similarly to Fe(Ⅱ)HCI The maximum accumulation potential of Fe(Ⅱ)HCI was significantly higher in RRF, while the highest maximum reaction rate of Fe(Ⅱ)Ha accumulation appeared in RRG. Significant correlations were found between the indexes of Fe(Ⅱ)HCI accumulation and soil pH, oxidation-reduction potential (Eh) and total organic acids, respectively. In together, we found that long-term application of green manures decreased the TFeHa in red paddy soils, but promoted the ability of Fe(lll) reduction, especially the ryegrass; Fe(Ⅱ)Ha increased along with the growth of rice and was affected by soil conditions and environmental factors, especially the water and redox ability. 展开更多
关键词 green manure red paddy soil ferric iron reduction rice-rice-winter green manure cropping system
下载PDF
Effects of Green Manure Rape Returned to Field on Rice Yield and Soil Fertility 被引量:5
14
作者 DENG Li-chao LI Mei +2 位作者 FANG Lian-yi QU Liang HUI Rong-kui 《Agricultural Science & Technology》 CAS 2018年第6期5-9,共5页
To determine the fertilization effect of the rapeseed green manure Youfei1, we assessed soil physical and chemical properties and the yield of succeeding crop before and after planting Youfei 1. Compared with basal so... To determine the fertilization effect of the rapeseed green manure Youfei1, we assessed soil physical and chemical properties and the yield of succeeding crop before and after planting Youfei 1. Compared with basal soil samples and controls,improvements were observed in the soil content of available N, P, K, and organic matter. The content of available K and organic matter increased significantly by17.99% and 25.45%. The soil pH did not change noticeably, but the soil bulk density decreased significantly by 22.55%. After planting Youfei 1, the yield of a succeeding rice crop increased significantly by 6.62% in two years. We conclude that planting Youfei 1 can help maintain and improve soil fertility and significantly increase the yield of succeeding crop. 展开更多
关键词 green manure Youfei 1 FERTILIZATION YIELD Soil nutrient status
下载PDF
Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China 被引量:29
15
作者 GAO Song-juan ZHANG Ren-gang +8 位作者 CAO Wei-dong FAN Yuan-yuan GAO Ju-sheng HUANG Jing BAI Jin-shun ZENG Nao-hua CHANG Dan-na Shimizu Katsu-yoshi Kristian Thorup-Kristensen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2512-2520,共9页
On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this stu... On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16 S r RNA gene. The Chao1 richness and non-parametric Shannon's index increased in all soil samples that received green manure treatments. The communities' structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups. 展开更多
关键词 green manure community structure community function 16S rRNA gene double rice
下载PDF
Spatial distribution prediction and benefits assessment of green manure in the Pinggu District,Beijing,based on the CLUE-S model 被引量:14
16
作者 ZHANG Li-ping ZHANG Shi-wen +3 位作者 ZHOU Zhi-ming HOU Sen HUANG Yuan-fang CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期465-474,共10页
Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in mo... Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways. 展开更多
关键词 CLUE-S model green manure spatial distribution prediction benefits assessment
下载PDF
Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China 被引量:1
17
作者 LIU Rui ZHOU Guo-peng +5 位作者 CHANG Dan-na GAO Song-juan HAN Mei ZHANG Jiu-dong SUN Xiao-feng CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期1177-1187,共11页
To ascertain the possibility of cultivating maize using biological nitrogen fixation(BNF)by leguminous green manure crops in maize/leguminous green manure intercropping systems,BNF and nitrogen(N)transfer were studied... To ascertain the possibility of cultivating maize using biological nitrogen fixation(BNF)by leguminous green manure crops in maize/leguminous green manure intercropping systems,BNF and nitrogen(N)transfer were studied in Xining and Wuwei,two typical northwestern Chinese cities.The experimental treatments included monocultured maize,monocultured green manures(hairy vetch and common vetch),and their intercropping systems.The proportions of N derived from the atmosphere(%N_(dfa))in intercropping systems were not significantly different from that in monocultured green manure systems at either experimental site,except for that in hairy vetch(HV)in Xining.The amount of N derived from the atmosphere(N_(dfa))of common vetch(CV)significantly decreased from 1.16 and 1.10 g/pot in monoculture to 0.77 and 0.55 g/pot when intercropped with maize,in Xining and Wuwei,respectively,and the N_(dfa) of HV when intercropped significantly decreased from 1.02 to 0.48 g/pot in Xining.In the intercropping systems in Xining and Wuwei,the amounts of N transferred(N_(transfer))from CV to maize were 21.54 and 26.81 mg/pot,accounting for 32.9 and 5.9%respectively of the N accumulation in maize,and the values of N_(transfer) from HV to maize were 39.61 and 46.22 mg/pot,accounting for 37.0 and 23.3%,respectively,of the N accumulation in maize.Path analysis showed that soil nutrient and green manure biomass were mainly related to N_(dfa),and thatδ^(15) N had a primary relationship with N_(transfer).We found that 5.9-37.0%of N accumulation in maize was transferred from green manures,and that the N transfer ability to maize of HV was higher than that of CV.In conclusion,intercropping with leguminous green manures provided a feasible way for maize to effectively utilize biologicallyfixed N. 展开更多
关键词 green manure MAIZE INTERCROPPING biological nitrogen fixation nitrogen transfer
下载PDF
Explaining farmers'reluctance to adopt green manure cover crops planting for sustainable agriculture in Northwest China 被引量:1
18
作者 Sheng-Han-Erin CHANG YI Xiao-yan +2 位作者 Johannes SAUER YIN Chang-bin LI Fu-duo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3382-3394,共13页
Green manure cover crops(GMCCs)planting has a potential for mitigating greenhouse gas emissions(GHG)in agroecosystems and provides important ecosystem services,thereby achieving the Sustainable Development Goals(SDGs)... Green manure cover crops(GMCCs)planting has a potential for mitigating greenhouse gas emissions(GHG)in agroecosystems and provides important ecosystem services,thereby achieving the Sustainable Development Goals(SDGs)stipulated by the United Nations.However,the advantages of cultivating GMCCs on arable land are not widely recognized.For example,in the whole of China,the GMCCs planting area is less than 3.5%of total arable land.The aim of this study is to explore reasons for the low adoption rate of GMCCs planting.Using best–worst scaling(BWS)approach,farmers ranked their preferred conservation practices including three types of GMCC cropping systems.Taking Gansu Province in Northwest China as a case study,a survey with 276 farmers was conducted.The findings indicated that three factors are related to the low adoption rate of GMCCs:1)farmers preferred improving farmland irrigation facilities and substituting chemical fertilizers with organic rather than planting GMCCs;2)lack of awareness and understanding of government policy on GMCCs and limited access to training courses;3)financial support and subsidies from the government are insufficient.This study provides insights and strategic implications for policymakers on how to further promote GMCCs in the future. 展开更多
关键词 best–worst scaling farmers'preferences green manure cover crops sustainable agriculture Northwest China
下载PDF
N Transformation of Green Manure Incorporated Directly or Returned into Soil After Feeding Pig and Its Efficiency 被引量:1
19
作者 HEDIAN-YUAN LIAOXIAN-LIN ZHOU WEI-JUN 《Pedosphere》 SCIE CAS CSCD 1994年第1期79-86,共8页
?15)N-labelled green manure was used to feed pigs. Its nitrogen recovery by pig body, feces and urine was23.5%, 23.8% and 28.8% respectively, totalling 76. 1%. Feces and green manure coordinated respectively withequal... ?15)N-labelled green manure was used to feed pigs. Its nitrogen recovery by pig body, feces and urine was23.5%, 23.8% and 28.8% respectively, totalling 76. 1%. Feces and green manure coordinated respectively withequal amount of CO(NH_2)_2-N as well as urine alone were applied as basic fertilizer in microplot experiments.The  ̄(15)N recovery from feces and urine was equivalent to 2.51% and 4.82% by rice grain, and 0.98% and1.94% by straw respectively, and soil residual  ̄(15)N from them took 13.3% and 4.90% of the  ̄(15)N in greenmanure. After feeding pigs with green manure and returning their feces and urine into soil, the  ̄(15)N recoveryby pig body and rice grain was 30.8%, and that by pig body, and rice plant as well as soil residual took 52.7%of the  ̄(15)N in feed.  ̄(15)N loss was 23.9% in pig feeding and 23.4% in rice planting. When green manure wasincorporated directly into soil, its  ̄(15)N recovery by grain was 26.65%, that by rice plant plus soil residual was65.2%, and the loss was 34.8%. 展开更多
关键词 ^(15)N-labelled green manure nitrogen transformation PIG
下载PDF
General Situation of Green Manure Germplasm Resources in China and Research Progress on Decomposition Characteristics and Fertility Improvement of Green Manures 被引量:2
20
作者 Zhongyi LI Hongqin TANG Caihui WEI 《Agricultural Biotechnology》 CAS 2018年第4期147-152,共6页
As a kind of biological fertilizer sources, green manure can improve soil fertility and the quality of agricultural products. This paper introduced the germplasm resource of green manures in the major provinces in Chi... As a kind of biological fertilizer sources, green manure can improve soil fertility and the quality of agricultural products. This paper introduced the germplasm resource of green manures in the major provinces in China, mainly summarized the characteristics of decomposition and nutrients release of returning green manures to soils, as well as the influence on soil fertility and succeeding crops, with the aim to provide references for rational utilization of green manures and the scientific management of farmland nutrients. 展开更多
关键词 green manure Decomposition characteristics Nutrients release characteristics Fertility improvement
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部