The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s fu...The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.展开更多
Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-fie...Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.展开更多
A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased ar...A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.展开更多
In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hoppin...In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hopping integrals which are the physical origin of cohesion of atoms. For thesimple case of s-valent system, the inversion of the many-body potentials are discussed in detail by using the lattice inversion method.展开更多
Estimated Green’s function (EGF) between stations has been extracted from ambient seismic noise, direct surface wave and coda waves. It is also confirmed by laboratory experiments on ultrasonics and theoretical der...Estimated Green’s function (EGF) between stations has been extracted from ambient seismic noise, direct surface wave and coda waves. It is also confirmed by laboratory experiments on ultrasonics and theoretical derivations assuming diffusive wave field, equi-partition of modes or random sources on an enclosed surface. This method provides a new approach to study the crust and mantle structure at regional scale, continental scale and global scale. Following the achievements with seismometer records, the records of infrasonic station, hydrophone and microphone were also used to obtain the EGFs of different wave fields. Since superconducting gravimeter is a better long period instrument than regular seismometer, EGF at longer period is expected to be obtained with the cross correlation of gravity data. In this paper, we will show the EGFs extracted by cross-correlations between the superconducting gravimeters and the seismometers. Both the travel times and dispersion curves obtained from different data types are consistent. The result shows that it is possible to retrieve the deep structure by the cross correlation of gravity data.展开更多
Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigrou...Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigroups.In this paper,Green's relations and generalized Green's relations on GV-semigroups are considered by the structure of GV-semigroups.D=j and D C D* on GV-semigroups will be proved.展开更多
Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results d...Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.展开更多
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three...By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.展开更多
Consider the piecewise linear finite element subspace S and parabolic semi discrete Green’s function of gradient type G h(t)∈Sk.The asymptotic optimal estimatedxdt【C|Inh| and two applications are discussed.
Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single...Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single inclined concentrated force at an interior point. The complex potentials are obtained based on a superposition principle, which provide the solutions to the plane problems of elasticity. The regular parts of the potentials are extracted in an asymptotic analysis. Based on the regular parts, Green’s function for the T-stress is obtained in a straightforward manner. Furthermore, Green’s functions are derived for a pair of symmetrically and anti-symmetrically concentrated forces by the superimposing method. Then, Green’s function is used to predict the domain-switch-induced T-stress in a ferroelectric double cantilever beam (DCB) test. The T-stress induced by the electromechanical loading is used to judge the stable and unstable crack growth behaviors observed in the test. The prediction results generally agree with the experimental data.展开更多
The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal ...The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal stress analyses. In this paper, we develop a practical Green’s function for a heat source disposed eccentrically into an elastic disk/cylinder subject to plane deformation. The edge of the disk/cylinder is assumed to be thermally permeable and traction-free. The full thermal stress ?eld induced by the heat source in the disk/cylinder is determined exactly and explicitly via the Cauchy integral techniques. In particular, a very simple formula is obtained to describe the hoop thermal stress on the edge of the disk/cylinder, which may be conveniently useful for analyzing the thermal stresses in microelectronic components.展开更多
A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem o...A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.展开更多
This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi...This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.展开更多
Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for ...Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for example, inverse source problems in seismology, nondestructive archeological probing, mine prospecting, inverse initial-value problems in acoustic tomography, etc. In spite of its crucial importance, almost all of the available rigorous investigations concern the case of unbounded simple domains such as layered planar or cylindrical or spherical structures. The main reason for the lack of the works related to non-homogeneous bounded structures is the extreme complexity of the explicit expressions of the Green’s functions. The aim of the present work consists in discovering some universal properties of the Green’s functions in question, which reduce enormously the difficulties arising in various applications. The universality mentioned here means that the properties are not depend on the geometrical and physical properties of the configuration. To this end one considers first the case when the domain is partially-homogeneous. Then the results are generalized to the most general case. To show the importance of the universal properties in question, they are applied to an inverse initial-value problem connected with photo-acoustic tomography.展开更多
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
基金supported by National Natural Science Foundation of China(11671100 and 12171104)the National Science Fund for Excellent Young Scholars(11922107)Guangxi Natural Science Foundation(2018GXNSFAA138210 and 2019JJG110010)。
文摘The pointwise space-time behaviors of the Green’s function and the global solution to the Vlasov-Poisson-Fokker-Planck(VPFP)system in three dimensional space are studied in this paper.It is shown that the Green’s function consists of the diffusion waves decaying exponentially in time but algebraically in space,and the singular kinetic waves which become smooth for all(t,x,v)when t>0.Furthermore,we establish the pointwise space-time behaviors of the global solution to the nonlinear VPFP system when the initial data is not necessarily smooth in terms of the Green’s function.
基金supported by the National Natural Science Foundation of China(No.U2032141)the Natural Science Foundation of Henan Province(No.202300410479,No.202300410480)+1 种基金the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘Single-particle resonances in the continuum are crucial for studies of exotic nuclei.In this study,the Green’s function approach is employed to search for single-particle resonances based on the relativistic-mean-field model.Taking^(120)Sn as an example,we identify singleparticle resonances and determine the energies and widths directly by probing the extrema of the Green’s functions.In contrast to the results found by exploring for the extremum of the density of states proposed in our recent study[Chin.Phys.C,44:084105(2020)],which has proven to be very successful,the same resonances as well as very close energies and widths are obtained.By comparing the Green’s functions plotted in different coordinate space sizes,we also found that the results very slightly depend on the space size.These findings demonstrate that the approach by exploring for the extremum of the Green’s function is also very reliable and effective for identifying resonant states,regardless of whether they are wide or narrow.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674214 and 11874255)
文摘A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.
文摘In this paper, we deduce the analytical form of many-body interatomic potentials based on the Green's function in tight-binding representation. The many-body potentials are expressed as the functions of the hopping integrals which are the physical origin of cohesion of atoms. For thesimple case of s-valent system, the inversion of the many-body potentials are discussed in detail by using the lattice inversion method.
基金supported jointly by Chinese Academy of Sciences Fund (No. KZCX-YW-116-1)Joint Seismological Science Foundation of China (Nos. 20080818 and 200708035)
文摘Estimated Green’s function (EGF) between stations has been extracted from ambient seismic noise, direct surface wave and coda waves. It is also confirmed by laboratory experiments on ultrasonics and theoretical derivations assuming diffusive wave field, equi-partition of modes or random sources on an enclosed surface. This method provides a new approach to study the crust and mantle structure at regional scale, continental scale and global scale. Following the achievements with seismometer records, the records of infrasonic station, hydrophone and microphone were also used to obtain the EGFs of different wave fields. Since superconducting gravimeter is a better long period instrument than regular seismometer, EGF at longer period is expected to be obtained with the cross correlation of gravity data. In this paper, we will show the EGFs extracted by cross-correlations between the superconducting gravimeters and the seismometers. Both the travel times and dispersion curves obtained from different data types are consistent. The result shows that it is possible to retrieve the deep structure by the cross correlation of gravity data.
基金Leading Academic Discipline Project of SHNU,China (No.DZL803)Innovation Project of Shanghai Education Committee,China(No.12YZ081)+2 种基金General Scientific Research Project of SHNU,China (No.SK201121)National Natural Science Foundation of China(No.11001046)Fundamental Research Fundation for the Central Universities,China (No.11D10904)
文摘Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigroups.In this paper,Green's relations and generalized Green's relations on GV-semigroups are considered by the structure of GV-semigroups.D=j and D C D* on GV-semigroups will be proved.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.
文摘By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.
基金The project is supported by the National Natural Science Foundation of China.
文摘Consider the piecewise linear finite element subspace S and parabolic semi discrete Green’s function of gradient type G h(t)∈Sk.The asymptotic optimal estimatedxdt【C|Inh| and two applications are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.10702071 and 11090334)the China Postdoctoral Science Foundation(No.201003281)+2 种基金the Shanghai Postdoctoral Scientific Program(No.10R21415800)the Shanghai Leading Academic Discipline Project(No.B302)sponsored by the"Sino-German Center for Research Promotion"under a project of"Crack Growth in Ferroelectrics Driven by Cyclic Electric Loading"
文摘Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single inclined concentrated force at an interior point. The complex potentials are obtained based on a superposition principle, which provide the solutions to the plane problems of elasticity. The regular parts of the potentials are extracted in an asymptotic analysis. Based on the regular parts, Green’s function for the T-stress is obtained in a straightforward manner. Furthermore, Green’s functions are derived for a pair of symmetrically and anti-symmetrically concentrated forces by the superimposing method. Then, Green’s function is used to predict the domain-switch-induced T-stress in a ferroelectric double cantilever beam (DCB) test. The T-stress induced by the electromechanical loading is used to judge the stable and unstable crack growth behaviors observed in the test. The prediction results generally agree with the experimental data.
基金the National Natural Science Foundation of China(No.11902147)the Natural Science Foundation of Jiangsu Province of China(No.BK20190393)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal stress analyses. In this paper, we develop a practical Green’s function for a heat source disposed eccentrically into an elastic disk/cylinder subject to plane deformation. The edge of the disk/cylinder is assumed to be thermally permeable and traction-free. The full thermal stress ?eld induced by the heat source in the disk/cylinder is determined exactly and explicitly via the Cauchy integral techniques. In particular, a very simple formula is obtained to describe the hoop thermal stress on the edge of the disk/cylinder, which may be conveniently useful for analyzing the thermal stresses in microelectronic components.
基金This project is supported by the National Science Fundation of China
文摘A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.
文摘This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.
文摘Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for example, inverse source problems in seismology, nondestructive archeological probing, mine prospecting, inverse initial-value problems in acoustic tomography, etc. In spite of its crucial importance, almost all of the available rigorous investigations concern the case of unbounded simple domains such as layered planar or cylindrical or spherical structures. The main reason for the lack of the works related to non-homogeneous bounded structures is the extreme complexity of the explicit expressions of the Green’s functions. The aim of the present work consists in discovering some universal properties of the Green’s functions in question, which reduce enormously the difficulties arising in various applications. The universality mentioned here means that the properties are not depend on the geometrical and physical properties of the configuration. To this end one considers first the case when the domain is partially-homogeneous. Then the results are generalized to the most general case. To show the importance of the universal properties in question, they are applied to an inverse initial-value problem connected with photo-acoustic tomography.