Removal of polycyclic aromatic hydrocarbons(PAHs) from different soil fractions of contaminated soil was investigated by using activated persulfate oxidation remediation in our research. The results showed that the li...Removal of polycyclic aromatic hydrocarbons(PAHs) from different soil fractions of contaminated soil was investigated by using activated persulfate oxidation remediation in our research. The results showed that the light fraction, which accounted for only 10% of the soil, contained 30% of the PAHs at a concentration of 4352 mg/kg. The heavy fraction contained more high-molecular-weight PAHs, and the total PAH concentration was 625 mg/kg. After being oxidized, the removal rate of PAHs was 39% in the light fraction and nearly 90% in the heavy fraction. Among the different fractions of the heavy fraction,humic acid contained the highest concentration of PAHs, and consequently, the highest removal efficiency of PAHs was also in humic acid. Compared with the light fraction, the heavy fraction has more aromatic compounds and those compounds were broken down during the oxidation process, which may be the removal mechanism involved in the oxidation of high-ring PAHs. Similarly, the enhancement of C= C bonds after oxidation can also explain the poor removal of high-ring PAHs in the light fraction. These results imply that different fractions of soil vary in composition and structure, leading to differences in the distribution and oxidation efficiencies of PAHs.展开更多
基金supported by the Key Research Program of the Chinese Academy of Sciences (No. ZDRW-ZS-2016-5-5)the Key Research Program of the Chinese Academy of Sciences (No. KFZD-SW-303)the Science and Technology Plan of Beijing (No. D16110900470000)
文摘Removal of polycyclic aromatic hydrocarbons(PAHs) from different soil fractions of contaminated soil was investigated by using activated persulfate oxidation remediation in our research. The results showed that the light fraction, which accounted for only 10% of the soil, contained 30% of the PAHs at a concentration of 4352 mg/kg. The heavy fraction contained more high-molecular-weight PAHs, and the total PAH concentration was 625 mg/kg. After being oxidized, the removal rate of PAHs was 39% in the light fraction and nearly 90% in the heavy fraction. Among the different fractions of the heavy fraction,humic acid contained the highest concentration of PAHs, and consequently, the highest removal efficiency of PAHs was also in humic acid. Compared with the light fraction, the heavy fraction has more aromatic compounds and those compounds were broken down during the oxidation process, which may be the removal mechanism involved in the oxidation of high-ring PAHs. Similarly, the enhancement of C= C bonds after oxidation can also explain the poor removal of high-ring PAHs in the light fraction. These results imply that different fractions of soil vary in composition and structure, leading to differences in the distribution and oxidation efficiencies of PAHs.