A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. ...A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.展开更多
In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by thi...In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.展开更多
We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qu...We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.展开更多
We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled b...We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.展开更多
As one of the most promising candidates for implementing quantum computers, superconducting qubits(SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger(GHZ) state by using invariants-based shortc...As one of the most promising candidates for implementing quantum computers, superconducting qubits(SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger(GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators(CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail.展开更多
We propose a scheme to generate a Greenberger-Horn-Zeilinger (GHZ) state of four atoms trapped in a two-mode optical cavity via an adiabatic passage. The scheme is robust against moderate fluctuations of the experim...We propose a scheme to generate a Greenberger-Horn-Zeilinger (GHZ) state of four atoms trapped in a two-mode optical cavity via an adiabatic passage. The scheme is robust against moderate fluctuations of the experimental parameters. Numerical calculations show that the excited probabilities of both the cavity modes and the atoms are tiny and depend on the pulse peaks of the classical laser fields. For certain decoherence due to the atomic spontaneous emission and the cavity decay, there exits a range of pulse peaks to get a high fidelity.展开更多
基金supported by the National High-Tech Research,Development Plan of China (Grant Nos 2006AA01Z440,2009AA012441 and 2009AA012437)National Basic Research Program of China (973 Program) (Grant No 2007CB311100)+5 种基金the National Natural Science Foundation of China (Grant Nos 60873191 and 60821001)the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No KM200810005004)Beijing Natural Science Foundation (Grant No 1093015)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast Universitythe ISN Open FoundationScience and Technology Program of Beijing (Grant No Z07000100720706)
文摘A multiparty simultaneous quantum identity authentication protocol based on Creenberger-Horne-Zeilinger (GHZ) states is proposed. The multi-user can be authenticated by a trusted third party (TTP) simultaneously. Compared with the scheme proposed recently (Wang et al 2006 Chin. Phys. Lett. 23(9) 2360), the proposed scheme has the advantages of consuming fewer quantum and classical resources and lessening the difficulty and intensity of necessary operations.
文摘In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.
文摘We present two schemes for realizing the remote preparation of a Greenberger-Horne-Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 90503010,10874050,10975054,91021011 and 11005057)National Basic Research Program of China (Grant No. 2005CB724508)the Foundation from the Ministry of Education of China (Grant No. 200804870051)
文摘We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11464046)
文摘As one of the most promising candidates for implementing quantum computers, superconducting qubits(SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger(GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators(CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB921601)the National Natural Science Foundation of China (Grant No. 10974028)the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009)
文摘We propose a scheme to generate a Greenberger-Horn-Zeilinger (GHZ) state of four atoms trapped in a two-mode optical cavity via an adiabatic passage. The scheme is robust against moderate fluctuations of the experimental parameters. Numerical calculations show that the excited probabilities of both the cavity modes and the atoms are tiny and depend on the pulse peaks of the classical laser fields. For certain decoherence due to the atomic spontaneous emission and the cavity decay, there exits a range of pulse peaks to get a high fidelity.