Computer chip is always accompanied by the increase of heat dissipation and miniaturization. The miniature heat pipes are widely used in notebook computer to resolve the heat dissipation problems. Maximum heat removed...Computer chip is always accompanied by the increase of heat dissipation and miniaturization. The miniature heat pipes are widely used in notebook computer to resolve the heat dissipation problems. Maximum heat removed model of miniature heat pipes building by grey model is presented. In order to know the foundation for modeling, the smooth grade of error examination is inquired and the accuracy of grey relational grade is verified. The model can be used to select a suitable heat pipes to solve electric heat problems in the future. Final results show that the grey model only needs four experiment data and its error value is less than 10%, further, it is better than computational fluid dynamics (CFD) model.展开更多
[Objective] This study aimed to investigate the dynamic changes of vegetation cover and its prediction method. [Method] The NDVl was used as data source to perform the spatial overlay analysis on the vegetation covera...[Objective] This study aimed to investigate the dynamic changes of vegetation cover and its prediction method. [Method] The NDVl was used as data source to perform the spatial overlay analysis on the vegetation coverage changes of the study area in different time period under the GIS platform, with the aim to reveal the spatial distribution rules of the vegetation cover in Eastern Jilin Province during the recent 10 years. The Markov Model and Grey System G (1, 1) theory model were used to predict the vegetation cover change trend in Eastern Jilin Province. [Result] The vegetation cover increased a little, but staying stable in general. The regions with great changes were mainly around the lake and river. The prediction results of Markov Model and Grey System G (1, 1) theory model were consistent with the observed measurement. [Conclusion] This study provided referential basis for the effective protection of the vegetation coverage in mountainous forest, and important reference value for the scientific decision-making on the forest construction planning in Jilin Province as well as in China and sustainable development of social economy.展开更多
文摘Computer chip is always accompanied by the increase of heat dissipation and miniaturization. The miniature heat pipes are widely used in notebook computer to resolve the heat dissipation problems. Maximum heat removed model of miniature heat pipes building by grey model is presented. In order to know the foundation for modeling, the smooth grade of error examination is inquired and the accuracy of grey relational grade is verified. The model can be used to select a suitable heat pipes to solve electric heat problems in the future. Final results show that the grey model only needs four experiment data and its error value is less than 10%, further, it is better than computational fluid dynamics (CFD) model.
基金Supported by the Project of China Geological Survey(1212010911084)~~
文摘[Objective] This study aimed to investigate the dynamic changes of vegetation cover and its prediction method. [Method] The NDVl was used as data source to perform the spatial overlay analysis on the vegetation coverage changes of the study area in different time period under the GIS platform, with the aim to reveal the spatial distribution rules of the vegetation cover in Eastern Jilin Province during the recent 10 years. The Markov Model and Grey System G (1, 1) theory model were used to predict the vegetation cover change trend in Eastern Jilin Province. [Result] The vegetation cover increased a little, but staying stable in general. The regions with great changes were mainly around the lake and river. The prediction results of Markov Model and Grey System G (1, 1) theory model were consistent with the observed measurement. [Conclusion] This study provided referential basis for the effective protection of the vegetation coverage in mountainous forest, and important reference value for the scientific decision-making on the forest construction planning in Jilin Province as well as in China and sustainable development of social economy.