To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and...To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.展开更多
The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov...The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.展开更多
The grey system theory, with the characteristics of fewer modeling data and higher accuracy, was employed to model the batch dyeing process for the purpose of accurate online control. The GM(1, 1) and GM (0, N) mo...The grey system theory, with the characteristics of fewer modeling data and higher accuracy, was employed to model the batch dyeing process for the purpose of accurate online control. The GM(1, 1) and GM (0, N) models of the grey system theory were discussed for their feasibilities of modding for batch dyeing process. The combination of direct dyestuff Fast Red F3B on cotton was chosen as a representative of the common dyeing method for describing the modeling process. Firstly, the GM( 1, 1 ) model and the GM(1, 1) combined with GM(0, N) model were employed to model the equilibrium percentage of dyeing uptake rate. Secondly, an integrated dyeing uptake rate model with three factors ( temperature, salt concentration, and pH) was established based on the adsorption rate equation. Experimental results show that this model has higher accuracy and beetler generalization ability, which can predict the results of batch dyeing process. Due to the application of grey system theory, the model has a lot of advantages, such as being easy to determine the parameter value and small amount of calculation. So it can also be suitable for the same type of combination of dyestuff-fahric by changing the parameters value only.展开更多
Through analyzing 7 Ib-type samples of synthetic single diamonds by their DTA and TG in air, we ascertained the extrapolated onset temperature on the curves of DTA as the characteristic temperature of their thermal st...Through analyzing 7 Ib-type samples of synthetic single diamonds by their DTA and TG in air, we ascertained the extrapolated onset temperature on the curves of DTA as the characteristic temperature of their thermal stabilities. Based on the grey system theory, we analyzed 4 factors influential in the thermal stability by the grey relationship analysis, a quantitative method, and derived the grey relationship sequence, that is, the rank of the influence extent of 4 factors on the thermal stability. Furthermore, we established the grey forecasting model, namely GM(1,5), for predicting the thermal stability of single diamonds with their intrinsic properties, which was then examined by a deviation-probability examination. The results illustrate that it is reasonable to take the Extrapolated Onset Temperature in DTA as the characteristic temperature for thermal stability (TS) of Ib-type synthetic single diamonds. The nitrogen content and grain shape regularity of diamonds are dominating factors. Likewise, grain size and compressive strength are minor factors. In addition, GM(1,5) can be used to predict the thermal stability of Ib-type synthetic single diamonds available. The precision rank of GM(1,5) is ‘GOOD’.展开更多
In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,a...In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.展开更多
The progress of grey system models is reviewed, and the general grey numbers, the grey sequence op- erators and several most commonly used grey system models are introduced, such as the absolute degree of grey inciden...The progress of grey system models is reviewed, and the general grey numbers, the grey sequence op- erators and several most commonly used grey system models are introduced, such as the absolute degree of grey incidence model, the grey cluster model based on endpoint triangular whitenization functions, the grey cluster model based on center-point triangular whitenization functions, the grey prediction model of the model GM ( 1,1), and the weighted multi-attribute grey target decision model.展开更多
[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theo...[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.展开更多
In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical cri...In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed.展开更多
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro...This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination da...Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.展开更多
A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag...A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.展开更多
This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h ...This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.展开更多
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq...A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).展开更多
Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic...Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic Hermite spline is put forward to improve the accuracy of derivative to the accumulated generating operation (AGO) series. Hopefully, it is worth stressing that the proposed NGM(1,1) model is particularly useful for predicting uncertainty data. Qualitative and quantitative comparisons between the proposed approach and other well-known algorithms are carried out through computer simulations on synthetic as well as natural signals. Simulation results demonstrate the proposed method can reduce end effects and improve the decomposition results of EMD.展开更多
The software stage-effort estimation can be used to dynamically adjust software project schedule, further to help make the project finished on budget. This paper presents a grey model Verhulst based method for stage-e...The software stage-effort estimation can be used to dynamically adjust software project schedule, further to help make the project finished on budget. This paper presents a grey model Verhulst based method for stage-effort estimation during software development process, a bias correction technology was used to improve the estimation accuracy. The proposed method was evaluated with a large-scale industrial software engineering database. The results are very encouraging and indicate the method has considerable potential.展开更多
The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict...The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict and avoid quality abnormalities,quickly locate their causes,and improve product assembly quality and efficiency are urgent engineering issues.As the core technology to realize the integration of virtual and physical space,digital twin(DT)technology can make full use of the low cost,high efficiency,and predictable advantages of digital space to provide a feasible solution to such problems.Hence,a quality management method for the assembly process of aerospace products based on DT is proposed.Given that traditional quality control methods for the assembly process of aerospace products are mostly post-inspection,the Grey-Markov model and T-K control chart are used with a small sample of assembly quality data to predict the value of quality data and the status of an assembly system.The Apriori algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assembly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace.The implementation of the proposed approach is described,taking the collected centroid data of an aerospace product’s cabin,one of the key quality data in the assembly process of aerospace products,as an example.A DT-based quality management system for the assembly process of aerospace products is developed,which can effectively improve the efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
基金supported by the National Natural Science Foundation of China(5147915151279149+2 种基金71540027)the China Postdoctoral Science Foundation Special Foundation Project(2013T607552012M521487)
文摘To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.
基金supported by the National Natural Science Foundation of China(Grant No.52079046)the Fundamental Research Funds for the Central Universities(Grant No.B210202017).
文摘The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.
基金National Natural Science Foundation of China(No.61074154)
文摘The grey system theory, with the characteristics of fewer modeling data and higher accuracy, was employed to model the batch dyeing process for the purpose of accurate online control. The GM(1, 1) and GM (0, N) models of the grey system theory were discussed for their feasibilities of modding for batch dyeing process. The combination of direct dyestuff Fast Red F3B on cotton was chosen as a representative of the common dyeing method for describing the modeling process. Firstly, the GM( 1, 1 ) model and the GM(1, 1) combined with GM(0, N) model were employed to model the equilibrium percentage of dyeing uptake rate. Secondly, an integrated dyeing uptake rate model with three factors ( temperature, salt concentration, and pH) was established based on the adsorption rate equation. Experimental results show that this model has higher accuracy and beetler generalization ability, which can predict the results of batch dyeing process. Due to the application of grey system theory, the model has a lot of advantages, such as being easy to determine the parameter value and small amount of calculation. So it can also be suitable for the same type of combination of dyestuff-fahric by changing the parameters value only.
文摘Through analyzing 7 Ib-type samples of synthetic single diamonds by their DTA and TG in air, we ascertained the extrapolated onset temperature on the curves of DTA as the characteristic temperature of their thermal stabilities. Based on the grey system theory, we analyzed 4 factors influential in the thermal stability by the grey relationship analysis, a quantitative method, and derived the grey relationship sequence, that is, the rank of the influence extent of 4 factors on the thermal stability. Furthermore, we established the grey forecasting model, namely GM(1,5), for predicting the thermal stability of single diamonds with their intrinsic properties, which was then examined by a deviation-probability examination. The results illustrate that it is reasonable to take the Extrapolated Onset Temperature in DTA as the characteristic temperature for thermal stability (TS) of Ib-type synthetic single diamonds. The nitrogen content and grain shape regularity of diamonds are dominating factors. Likewise, grain size and compressive strength are minor factors. In addition, GM(1,5) can be used to predict the thermal stability of Ib-type synthetic single diamonds available. The precision rank of GM(1,5) is ‘GOOD’.
文摘In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.
基金Supported by the Joint Research Project of Both the National Natural Science Foundation of Chinaand the Royal Society(RS)of UK(71111130211)the National Natural Science Foundation of China(90924022,70971064,70901041,71171113)+7 种基金the Major Project of Social Science Foundation of China(10ZD&014)the Key Project of Social Science Foundation of China(08AJY024)the Key Project of Soft Science Foundation of China(2008GXS5D115)the Foundation of Doctoral Programs(200802870020,200902870032)the Foundation of Humanities and Social Sciences of Chinese National Ministry of Education(08JA630039)the Science Foundation ofthe Excellent and Creative Group of Science and Technology in Jiangsu Province(Y0553-091)the Foundation of Key Research Base of Philosophy and Social Science in Colleges and Universities of Jiangsu Province(2010JDXM015)the Foundation of Outstanding Teaching Group of China(10td128)~~
文摘The progress of grey system models is reviewed, and the general grey numbers, the grey sequence op- erators and several most commonly used grey system models are introduced, such as the absolute degree of grey incidence model, the grey cluster model based on endpoint triangular whitenization functions, the grey cluster model based on center-point triangular whitenization functions, the grey prediction model of the model GM ( 1,1), and the weighted multi-attribute grey target decision model.
基金Supported by National Natural Science Fund Item(61064005)~~
文摘[Objective] The research aimed to study the yield prediction model of processing tomato based on the grey system theory.[Method] The variation trend of processing tomato yield was studied by using the grey system theory,and GM(1,1)grey model of processing tomato yield prediction was established.The processing tomato yield in Xinjiang during 2001-2009 was as the example to carry out the instance analysis.[Result] The model had the high forecast accuracy and strong generalization ability,and was reliable for the prediction of recent processing tomato yield.[Conclusion] The research provided the reference for the macro-control of tomato industry,the processing and storage of tomato in Xinjiang.
文摘In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed.
基金Supported by the Shandong Natural Science Foundation(ZR2013BL008)
文摘This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
文摘Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.
文摘A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.
基金supported by the National Natural Science Foundation of China(7117111370901041)
文摘This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).
基金supported by the National Natural Science Foundation of China (60975009 61171197+6 种基金 61174016)the Innovative Team Program of the NNSF of China (61021002)the National Basic Research Program of China (973 Program) (2012CB720000)the Shandong Provincial Natural Science Foundation (ZR2011FM005)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2010DX001)the Research Fund for the Doctoral Program of Higher Education of China (20092302110037 20102302110033)
文摘Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic Hermite spline is put forward to improve the accuracy of derivative to the accumulated generating operation (AGO) series. Hopefully, it is worth stressing that the proposed NGM(1,1) model is particularly useful for predicting uncertainty data. Qualitative and quantitative comparisons between the proposed approach and other well-known algorithms are carried out through computer simulations on synthetic as well as natural signals. Simulation results demonstrate the proposed method can reduce end effects and improve the decomposition results of EMD.
基金Supported by the National Natural Science Foundation of China (60673124)the National High Technology Research and Development Program of China (863 Program)(2006AA01Z183).
文摘The software stage-effort estimation can be used to dynamically adjust software project schedule, further to help make the project finished on budget. This paper presents a grey model Verhulst based method for stage-effort estimation during software development process, a bias correction technology was used to improve the estimation accuracy. The proposed method was evaluated with a large-scale industrial software engineering database. The results are very encouraging and indicate the method has considerable potential.
基金National Key Research and Development Program of China(Grant No.2020YFB1710300)National Natural Science Foundation of China(Grant No.52005042)+2 种基金National Defense Fundamental Research Foundation of China(Grant No.JCKY2020203B039)Equipment Pre-research Foundation of China(Grant No.80923010101)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict and avoid quality abnormalities,quickly locate their causes,and improve product assembly quality and efficiency are urgent engineering issues.As the core technology to realize the integration of virtual and physical space,digital twin(DT)technology can make full use of the low cost,high efficiency,and predictable advantages of digital space to provide a feasible solution to such problems.Hence,a quality management method for the assembly process of aerospace products based on DT is proposed.Given that traditional quality control methods for the assembly process of aerospace products are mostly post-inspection,the Grey-Markov model and T-K control chart are used with a small sample of assembly quality data to predict the value of quality data and the status of an assembly system.The Apriori algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assembly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace.The implementation of the proposed approach is described,taking the collected centroid data of an aerospace product’s cabin,one of the key quality data in the assembly process of aerospace products,as an example.A DT-based quality management system for the assembly process of aerospace products is developed,which can effectively improve the efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.