Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web ser...Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web services and proposes a method for availability evaluation of Web services using improved grey correlation analysis with entropy difference and weight (EWGCA).This method is based on grey correlation analysis, and use entropy difference to illustrate the changes of availability, set weight to quantize availability requirements of different operations or transactions in services. Through simulation experiment in high load scenarios for Web services, the experiment result shows that our method can realize hierarchical description and overall evaluation for availability of Web services accurately in the case of smaller test sample volumes or uncertain data even in the field of big data.展开更多
In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai Province,the relations between energy consumption and industrial structure is analyze...In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai Province,the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory.The relevancy degree among the primary industry,the secondary industry and the tertiary industry and living energy consumption are obtained,and then the trend of energy consumption in the following several years can be predicted.The results show that the secondary industry has the largest relevancy degree to the total energy consumption.In the end,according to the results of the research,several suggestions on how to saving energy are put forward.Firstly,the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries.Secondly,the government should promote the low-carbon way of life;promote energy saving and control the energy consumption of the department of life.Thirdly,clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h...The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.展开更多
Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational ...Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.展开更多
基金This research is supported by the National Natural Science Foundation of China (61370212), the Research Fund for the Doctoral Program of Higher Education of China (20122304130002), the Natural Science Foundation of Heilongjiang Province (ZD 201102) and the Fundamental Research Fund for the Central Universities (HEUCFZ1213, HEUCF100601).
文摘Web services is one of the basic network services, whose availability evaluation is of great significance to the promotion of users’ experience. This paper focuses on the problem of availability evaluation of Web services and proposes a method for availability evaluation of Web services using improved grey correlation analysis with entropy difference and weight (EWGCA).This method is based on grey correlation analysis, and use entropy difference to illustrate the changes of availability, set weight to quantize availability requirements of different operations or transactions in services. Through simulation experiment in high load scenarios for Web services, the experiment result shows that our method can realize hierarchical description and overall evaluation for availability of Web services accurately in the case of smaller test sample volumes or uncertain data even in the field of big data.
基金Supported by Qinghai Provincial Department of Land and Resources
文摘In view of the complexity and non-linearity of energy consumption system and the status quo of the development of energy in Qinghai Province,the relations between energy consumption and industrial structure is analyzed by using the quantitative analysis of grey relation degree by using the grey system theory.The relevancy degree among the primary industry,the secondary industry and the tertiary industry and living energy consumption are obtained,and then the trend of energy consumption in the following several years can be predicted.The results show that the secondary industry has the largest relevancy degree to the total energy consumption.In the end,according to the results of the research,several suggestions on how to saving energy are put forward.Firstly,the government should improve the high-tech industry and restrict the development of high-consumption and high-pollution industries.Secondly,the government should promote the low-carbon way of life;promote energy saving and control the energy consumption of the department of life.Thirdly,clean production should be actively promoted in the tertiary industry and the circular economy should be vigorously expanded.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
基金supported by the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences.
文摘The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region.
基金Supported by China National Science and Technology Major Project(2016ZX05020-006)。
文摘Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.