Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or n...Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.展开更多
Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential ev...Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential evolution( HDE) algorithm based on greedy constructive procedure( GCP) is proposed,which combines differential evolution( DE) with tabu search( TS). DE is applied to generating the elite individuals of population,while TS is used for finding the optimal value by making perturbation in selected elite individuals. A lower bounding technique is developed to evaluate the quality of proposed algorithm. Experimental results verify the effectiveness and feasibility of proposed algorithm.展开更多
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-...In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.展开更多
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H...Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.展开更多
In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf op...In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf optimization and genetic algorithm(HGWOGA).HGWOGA was applied to this hybrid problem through three procedures.First,the balance between the exploration and the exploitation process was done by grey wolf optimizer algorithm.Then,we divided the population into subpopulation and used the arithmetical crossover operator to utilize the dimension reduction and the population partitioning processes.At last,mutation operator was applied in the whole population in order to refrain from the premature convergence and trapping in local minima.MATLAB code was designed to implement the proposed methodology.The result of this algorithm is compared with the results of iteration method,GWO,GA,artificial bee colony(ABC)and particle swarm optimization(PSO)techniques.The results obtained by this algorithm are better when compared with those mentioned in the text.展开更多
Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertai...Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertain programming model to optimize the supply chain production-distribution cost. The programming parameters of the material suppliers, manufacturer, distribution centers, and the customers are integrated into the presented model. On the basis of the chance measure and the credibility of grey fuzzy variable, the grey fuzzy simulation methodology was proposed to generate input-output data for the uncertain functions. The designed neural network can expedite the simulation process after trained from the generated input-output data. The improved Particle Swarm Optimization (PSO) algorithm based on the Differential Evolution (DE) algorithm can optimize the uncertain programming problems. A numerical example was presented to highlight the significance of the uncertain model and the feasibility of the solution strategy.展开更多
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数...灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。展开更多
基金supported by the National Basic Research Program of China(No.2007CB316502)the National Natural Science Foundation of China(No.60534060)
文摘Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.
基金Shanghai Municipal Natural Science Foundation of China(No.10ZR1431700)
文摘Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential evolution( HDE) algorithm based on greedy constructive procedure( GCP) is proposed,which combines differential evolution( DE) with tabu search( TS). DE is applied to generating the elite individuals of population,while TS is used for finding the optimal value by making perturbation in selected elite individuals. A lower bounding technique is developed to evaluate the quality of proposed algorithm. Experimental results verify the effectiveness and feasibility of proposed algorithm.
文摘In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
文摘Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.
文摘In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf optimization and genetic algorithm(HGWOGA).HGWOGA was applied to this hybrid problem through three procedures.First,the balance between the exploration and the exploitation process was done by grey wolf optimizer algorithm.Then,we divided the population into subpopulation and used the arithmetical crossover operator to utilize the dimension reduction and the population partitioning processes.At last,mutation operator was applied in the whole population in order to refrain from the premature convergence and trapping in local minima.MATLAB code was designed to implement the proposed methodology.The result of this algorithm is compared with the results of iteration method,GWO,GA,artificial bee colony(ABC)and particle swarm optimization(PSO)techniques.The results obtained by this algorithm are better when compared with those mentioned in the text.
基金The Science and Research Foundation of Shanghai Municipal Education Commission (No06DZ033)the Doctoral Science and Research Foundation of Shanghai Nor mal University ( No PL719)the Science and Research Foundation of Shanghai Nor mal University (NoSK200741)
文摘Most supply chain programming problems are restricted to the deterministic situations or stochastic environmcnts. Considering twofold uncertainty combining grey and fuzzy factors, this paper proposes a hybrid uncertain programming model to optimize the supply chain production-distribution cost. The programming parameters of the material suppliers, manufacturer, distribution centers, and the customers are integrated into the presented model. On the basis of the chance measure and the credibility of grey fuzzy variable, the grey fuzzy simulation methodology was proposed to generate input-output data for the uncertain functions. The designed neural network can expedite the simulation process after trained from the generated input-output data. The improved Particle Swarm Optimization (PSO) algorithm based on the Differential Evolution (DE) algorithm can optimize the uncertain programming problems. A numerical example was presented to highlight the significance of the uncertain model and the feasibility of the solution strategy.
文摘灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。