期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于随机森林和最近邻插值法的交通流量数据修复方法
1
作者 汤伟 漆苏应 +1 位作者 杨晓东 李国强 《科学技术与工程》 北大核心 2024年第32期14056-14065,共10页
针对目前传感器在采集数据过程中由于受到天气或者自身设备故障等原因,造成数据缺失或者数据异常,导致不能从采集的数据中获得准确的交通变化规律等问题,分别提出基于改进最近邻插值算法和基于随机森林插补的交通流量数据缺失修复模型... 针对目前传感器在采集数据过程中由于受到天气或者自身设备故障等原因,造成数据缺失或者数据异常,导致不能从采集的数据中获得准确的交通变化规律等问题,分别提出基于改进最近邻插值算法和基于随机森林插补的交通流量数据缺失修复模型。由于交通数据缺失场景和缺失类型以及时空关联的差异性,将数据缺失类型划分为简单随机缺失和复杂连续缺失两种;利用改进的最近邻插值算法建立模型处理简单随机缺失,建立随机森林模型进行迭代插补处理复杂连续缺失;面对两种不同的数据缺失类型,利用期望最大化算法、深度信念网络、季节性差分自回归滑动平均模型分别搭建模型对比交叉验证改进的最近邻插值算法和随机森林插补方法。数据来源于美国加利福尼亚州PeMS(performance measurement system)实时采集的2022年6月1日—2022年7月31日以5 min为采样时间间隔的交通流量数据,为了模拟数据的缺失状况,将完整数据按照一定比例进行缺失,来模拟数据缺数的情况,得到简单随机缺失和复杂连续缺失分布的交通流量缺失数据集。结果表明:本实验在不同的缺失比例下均有良好的表现,通过设计不同的缺失比例和类型,各项评估指标均有明显优势,验证了两种数据缺失填充模型的有效性。 展开更多
关键词 智能交通 缺失数据修复 随机森林(RF) 最近邻插值算法 交通运营管理
下载PDF
一种顾及空间异质性和噪声的遥感缺失数据重建方法
2
作者 雷楷烨 张显云 +1 位作者 刘晶晖 吴雪 《测绘通报》 CSCD 北大核心 2024年第12期40-47,共8页
针对光学遥感数据常存在大量缺失数据和噪声,以及现有光学遥感缺失数据重建算法大都未充分顾及地理数据空间相关密切程度的问题,本文充分利用地理空间数据间的时空关联性,提出了一种协同随机森林(RF)和地理加权回归(GWR)的重建方法(RF+G... 针对光学遥感数据常存在大量缺失数据和噪声,以及现有光学遥感缺失数据重建算法大都未充分顾及地理数据空间相关密切程度的问题,本文充分利用地理空间数据间的时空关联性,提出了一种协同随机森林(RF)和地理加权回归(GWR)的重建方法(RF+GWR),分别以GF-4归一化植被指数(NDVI)、MODIS地表温度(LST)和GF-4反射率数据为试验材料,对RF+GWR方法的普适性和缺失重建性能进行了评估。试验结果表明,在所设不同云量掩膜水平下,相比于KNN和RF,RF+GWR方法在GF-4 NDVI、MODIS LST和GF-4波段反射率缺失数据方面的重建性能均有不同程度的改善,均方根误差、平均绝对误差和决定系数最大提升分别为33.07%、30.19%和7.06%。 展开更多
关键词 光学遥感 缺失数据重建 地理加权回归 随机森林 K最近邻
下载PDF
基于AP聚类的时序数据缺失值有序填充算法
3
作者 王强 周金宇 金超武 《计算机仿真》 2024年第8期521-525,共5页
为提高数据的完整性,便于从数据中获得更多有价值的信息,提出基于AP聚类的时序数据缺失值有序填充算法。为提高数据质量,将数据分为不同子集,根据标准差思想对数据作归一化处理,将数值控制在固定区间,减少数据的不平衡性;分别构建吸引... 为提高数据的完整性,便于从数据中获得更多有价值的信息,提出基于AP聚类的时序数据缺失值有序填充算法。为提高数据质量,将数据分为不同子集,根据标准差思想对数据作归一化处理,将数值控制在固定区间,减少数据的不平衡性;分别构建吸引度与归属度更新矩阵,确保消息正常传递,达到近邻传播目的;设计不完整信息系统,将不同数据间的相似度作为聚类依据;获取聚类邻域的半径参数,通过数据点密度指标确定聚类中心,将相邻数据聚集在一起;利用熵值概念,根据数据相似度计算加权系数,确定缺失数据属性值,实现缺失值有序填充。实验结果表明,所提方法能够将具有相同属性特征的数据聚集在一起,即使数据缺失率较高,也能达到很高的填充准确率。 展开更多
关键词 近邻聚类算法 时序数据 缺失值 有序填充 不完整信息系统
下载PDF
缺失数据插补方法探讨——基于最近邻插补法和关联规则法 被引量:21
4
作者 于力超 金勇进 王俊 《统计与信息论坛》 CSSCI 北大核心 2015年第1期35-40,共6页
提出基于最近邻插补和关联规则的缺失数据插补方法,将不含缺失数据的变量作为辅助变量,通过定义距离函数寻找与含缺失数据的样本单元距离较近的样本,然后利用挖掘得到的关联规则支持度和提升度乘积的倒数作为权重,对样本单元之间的距离... 提出基于最近邻插补和关联规则的缺失数据插补方法,将不含缺失数据的变量作为辅助变量,通过定义距离函数寻找与含缺失数据的样本单元距离较近的样本,然后利用挖掘得到的关联规则支持度和提升度乘积的倒数作为权重,对样本单元之间的距离进行加权处理,得到加权距离,再用加权距离最小的样本单元对应的属性值对缺失值进行插补。这种方法可以解决由不同最近距离样本单元得到不同插补值的问题,最后给出了该方法的实施步骤和应用范例。 展开更多
关键词 关联规则 缺失数据 最近邻插补 加权距离
下载PDF
一种基于近邻规则的缺失数据填补方法 被引量:15
5
作者 王凤梅 胡丽霞 《计算机工程》 CAS CSCD 2012年第21期53-55,62,共4页
数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间... 数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间的相似度,用最相似的规则项值填补缺失值。实验结果表明,该方法具有较高的填补正确率。 展开更多
关键词 关联规则 缺失数据 填补 近邻规则 相似度 K最近邻法
下载PDF
基于局部加权重构的化工过程数据恢复算法 被引量:4
6
作者 郭金玉 袁堂明 李元 《计算机应用》 CSCD 北大核心 2016年第1期282-286,共5页
针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的... 针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。 展开更多
关键词 数据挖掘 缺失数据 数据恢复 k近邻规则 局部加权重构 化工过程
下载PDF
加权壳近邻填充数学模型 被引量:4
7
作者 吴昊 唐振军 《华南师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期45-48,共4页
提出加权壳近邻填充(WSNI)缺失数据数学模型,充分利用壳近邻填充选取近邻数据的特性,侧重于被重复选择的近邻点,有效提高了填充效果.实验结果表明,提出的加权壳近邻填充数学模型比k近邻填充和壳近邻填充的效果好.
关键词 加权壳近邻填充 缺失数据 k近邻填充 壳近邻填充
下载PDF
一种对无统计环境测量模型缺省值进行预测的新方法 被引量:1
8
作者 李梦龙 王智猛 +2 位作者 马宁 王晃 郁凌庄 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期736-739,共4页
采用模式识别中的K最近邻法(KNN方法)对不满足于统计模型的数据阵中的缺省值进行预测,预测以样本值作为预测参照 由于原始数据阵没有训练集,故采用对原始数据进行最大似然主成分分析(MPCA),获得的结论与KNN方法处理后的数据的主成分分... 采用模式识别中的K最近邻法(KNN方法)对不满足于统计模型的数据阵中的缺省值进行预测,预测以样本值作为预测参照 由于原始数据阵没有训练集,故采用对原始数据进行最大似然主成分分析(MPCA),获得的结论与KNN方法处理后的数据的主成分分析结论相比较,结果表明,两套数据分析得出的主因子数、因子负载阵基本一致,而因子得分阵有细微的差别。 展开更多
关键词 KNN最邻近法 最大似然主成分分析 缺省值预测 环境数据
下载PDF
基于马氏距离和灰色分析的缺失值填充算法 被引量:6
9
作者 刘星毅 《计算机应用》 CSCD 北大核心 2009年第9期2502-2504,2536,共4页
针对kNN算法中欧氏距离具有密度相关性敏感的缺点,提出综合马氏距离和灰色分析方法代替kNN算法中欧式距离的新算法,应用到缺失数据填充方面。其中马氏距离能解决密度相关明显的数据集,灰色分析方法能处理密度相关不明显的情况。因此,该... 针对kNN算法中欧氏距离具有密度相关性敏感的缺点,提出综合马氏距离和灰色分析方法代替kNN算法中欧式距离的新算法,应用到缺失数据填充方面。其中马氏距离能解决密度相关明显的数据集,灰色分析方法能处理密度相关不明显的情况。因此,该算法能很好处理任何数据集,实验结果显示,算法在填充结果上明显优于现有的其他算法。 展开更多
关键词 数据预处理 缺失数据 最近邻算法 灰色分析 马氏距离
下载PDF
基于马氏距离的缺失数据填充算法 被引量:6
10
作者 刘星毅 檀大耀 +1 位作者 曾春华 韦小铃 《微计算机信息》 2010年第9期225-226,215,共3页
最近邻算法由于操作简单,效果显著,无论在科研还是实际生活中都具有广泛应用。文章首先解释了基于欧式距离的最近邻算法在计算两个记录之间距离方面的不足,然后提出了基于马氏距离的最近邻算法,真实数据集的实验结果显示,改进后的最近... 最近邻算法由于操作简单,效果显著,无论在科研还是实际生活中都具有广泛应用。文章首先解释了基于欧式距离的最近邻算法在计算两个记录之间距离方面的不足,然后提出了基于马氏距离的最近邻算法,真实数据集的实验结果显示,改进后的最近邻算法能取得较好的成绩。 展开更多
关键词 最近邻算法 数据缺失填充 马氏距离
下载PDF
GBNN-填充缺失属性值算法 被引量:6
11
作者 刘星毅 《微计算机信息》 北大核心 2007年第05X期246-248,共3页
在数据挖掘和机器学习领域,缺失数据经常出现,本文结合灰色系统理论和最近邻理论,提出了一种新的缺失数据填充方法(简称为GBNN算法),在实验中对本算法和常见的最近邻算法从分类准确率和预测正确率两个方面进行了比较,分析了本算法的优... 在数据挖掘和机器学习领域,缺失数据经常出现,本文结合灰色系统理论和最近邻理论,提出了一种新的缺失数据填充方法(简称为GBNN算法),在实验中对本算法和常见的最近邻算法从分类准确率和预测正确率两个方面进行了比较,分析了本算法的优越性。 展开更多
关键词 灰色系统 缺失数据 最近邻
下载PDF
不同缺失比例下的缺失值插补方法比较
12
作者 单锐 杨婧 +1 位作者 朱文元 王芳 《信息技术》 2023年第12期52-56,共5页
现实中获得的数据集往往存在缺失值,为了研究不同缺失值插补方法在不同缺失比例下的插补效果,文中选择数值型和混合型的完整数据集,设置不同的缺失比例,分别使用均值插补、K近邻插补、多变量特征插补、随机森林插补四种方法对其进行插补... 现实中获得的数据集往往存在缺失值,为了研究不同缺失值插补方法在不同缺失比例下的插补效果,文中选择数值型和混合型的完整数据集,设置不同的缺失比例,分别使用均值插补、K近邻插补、多变量特征插补、随机森林插补四种方法对其进行插补,并使用决策树分类器拟合填补后的数据集,通过计算分类精度比较四种方法的填补效果。实验结果表明,在缺失比例不大于50%时,多变量特征插补和随机森林插补方法在数值型和混合型数据集上的插补效果优于其他两种方法。 展开更多
关键词 数据缺失 均值插补 K近邻插补 多变量特征插补 随机森林插补
下载PDF
不同缺失数据处理方法对D-vine Copula分类器的影响
13
作者 杨光 王蕾 付志慧 《沈阳师范大学学报(自然科学版)》 CAS 2021年第1期35-38,共4页
数据缺失是较为常见的影响数据质量的因素,会降低分析结果的可靠性。采用不同方法填补缺失数据,再用D-vine copula分类器对填补后的数据做分类,通过预测准确率来分析不同缺失数据处理方法对D-vine copula分类器的影响。首先,介绍了5种... 数据缺失是较为常见的影响数据质量的因素,会降低分析结果的可靠性。采用不同方法填补缺失数据,再用D-vine copula分类器对填补后的数据做分类,通过预测准确率来分析不同缺失数据处理方法对D-vine copula分类器的影响。首先,介绍了5种常用的缺失数据处理方法和D-vine copula分类器的相关知识;其次,结合实际数据,模拟不同的缺失比例,用这5种方法对数据进行填补;最后,用D-vine copula分类器对填补后的数据做分类,对分类准确率进行比较分析。研究发现,填补后的数据在D-vine copula分类器上表现得较为稳定,当数据缺失比例在5%~10%时,用随机插补法处理缺失数据效果较好,当数据缺失比例较大时,可以优先考虑用K最近邻插补法处理缺失数据。 展开更多
关键词 缺失数据 D-vine Copula 分类器 K最近邻插补法
下载PDF
基于近邻噪声处理的KNN缺失数据填补算法 被引量:29
14
作者 郝胜轩 宋宏 周晓锋 《计算机仿真》 CSCD 北大核心 2014年第7期264-268,共5页
在优化算法的研究中,针对KNN算法对缺失数据的填补效果会因为原始数据中存在噪声而受到严重影响的问题,根据待填补缺失数据最近邻的近邻关系,提出了一种新的缺失数据填补算法——ENN-KNN(Eliminate Neighbor Noise k-Nearest Neighbor)... 在优化算法的研究中,针对KNN算法对缺失数据的填补效果会因为原始数据中存在噪声而受到严重影响的问题,根据待填补缺失数据最近邻的近邻关系,提出了一种新的缺失数据填补算法——ENN-KNN(Eliminate Neighbor Noise k-Nearest Neighbor)。通过比较待填补缺失数据每个最近邻的真实近邻程度能够有效地识别潜在的噪声最近邻。最后使用所有非噪声最近邻对待填补缺失数据进行填补,从而消除了噪声最近邻对填补结果的影响。通过观察四组UCI数据集的仿真结果,可知ENN-KNN算法的填补准确性总体上要优于KNN算法。 展开更多
关键词 缺失数据填补 近邻 噪声最近邻
下载PDF
基于粗糙集理论的不完备数据分析方法的混合信息系统填补算法 被引量:7
15
作者 彭莉 张海清 +3 位作者 李代伟 唐聃 于曦 何磊 《计算机应用》 CSCD 北大核心 2021年第3期677-685,共9页
为了提高基于粗糙集理论的不完备数据分析方法(ROUSTIDA)在实际应用中对包含离散型(如整型、字符串型、枚举型)、连续型(如浮点数表达)、缺失型属性的混合信息系统(HIS)数据的填补能力,提出了一种基于粗糙集理论的混合信息系统缺失值填... 为了提高基于粗糙集理论的不完备数据分析方法(ROUSTIDA)在实际应用中对包含离散型(如整型、字符串型、枚举型)、连续型(如浮点数表达)、缺失型属性的混合信息系统(HIS)数据的填补能力,提出了一种基于粗糙集理论的混合信息系统缺失值填补方法(RSHISMIA)。首先,根据决策属性等价类划分思想并按照决策属性对混合信息系统HIS进行划分,解决了填补后可能出现的决策规则冲突问题;其次,定义混合距离矩阵来合理量化对象间的相似性,从而筛选出具有填补能力的样本并克服ROUSTIDA无法处理连续性属性的缺点;然后,结合近邻思想解决了ROUSTIDA在无差别对象属性值发生冲突情况下无法对相同属性缺失数据进行填补的问题。最后,使用10个UCI标准数据集进行实验,将所提出的方法与ROUSTIDA、K近邻填补(KNNI)算法、随机森林填补(RFI)算法和矩阵分解(MF)等几种经典算法进行了比较。实验结果表明,与ROUSTIDA相比,所提方法在查全率上平均高出81%,在查准率上提升了5%~53%,且其归一化均方根误差(NRMSE)最多减小了0.12。此外,所提方法的分类准确率与ROUSTIDA相比平均提升了7%,且优于KNNI、RFI及MF等填补算法。 展开更多
关键词 基于粗糙集理论的不完备数据分析方法 混合信息系统 缺失值填补 混合距离 最近邻
下载PDF
基于最近邻区间的不完整基因表达数据多目标聚类算法 被引量:2
16
作者 常巧珍 曹隽喆 +1 位作者 顾宏 李丹 《大连理工大学学报》 CAS CSCD 北大核心 2021年第4期416-423,共8页
针对不完整基因表达数据的聚类问题,提出了一种多目标NSGA-Ⅱ框架下缺失值填补与聚类协同优化的算法.算法根据欧式距离确定不完整基因的近邻基因,以缺失值的最近邻区间为约束,采用混合编码将缺失值填补与聚类中心优化融入NSGA-Ⅱ进化过... 针对不完整基因表达数据的聚类问题,提出了一种多目标NSGA-Ⅱ框架下缺失值填补与聚类协同优化的算法.算法根据欧式距离确定不完整基因的近邻基因,以缺失值的最近邻区间为约束,采用混合编码将缺失值填补与聚类中心优化融入NSGA-Ⅱ进化过程,通过将数据集的统计信息与聚类结果共同作为缺失值填补因素,提升不完整基因表达数据的填补准确度及聚类性能.在多个基因表达数据集上的实验结果表明,所提算法得到了更接近真实表达值的填补结果及更紧凑的聚类效果,且聚类结果具有统计显著性. 展开更多
关键词 基因表达数据 缺失值 多目标聚类 最近邻规则
下载PDF
一种基于K近邻和多元回归的传感器缺失值预测算法 被引量:5
17
作者 关伟 李先通 《公路交通科技》 CAS CSCD 北大核心 2019年第3期14-21,共8页
传感器是当前公路工程中数据采集与监控的主要手段之一,然而在使用过程中时常出现的缺失值严重影响了传感器的监测效果及后续数据分析。目前多数传感器缺失值预测算法在设计时利用了传感器间的空间相关性或该传感器自身的时间相关性,具... 传感器是当前公路工程中数据采集与监控的主要手段之一,然而在使用过程中时常出现的缺失值严重影响了传感器的监测效果及后续数据分析。目前多数传感器缺失值预测算法在设计时利用了传感器间的空间相关性或该传感器自身的时间相关性,具有一定的预测效果。KMRA算法(K-Nearest-Neighbor on Multiple Regression Algorithm)则采用了空间相关性及时间相关性结合预测的方法,不但大幅提高了预测准确率及算法的效率,同时具有更高的实用价值。当传感器v在时刻t出现缺失值时,KMRA首先确定v与邻居之间的相关系数,选择其中K个与v相关度最高的邻居节点,利用其相关系数进行t时刻的空间相关性预测,并形成空间相关性预测结果。其次,算法利用传感器v在监测过程中产生的时间序列,选取q/2个与t时刻相邻的数值,并分别设置不同的偏相关系数,通过多元回归的方法将偏相关系数与q个取值进行时间相关性预测。最后,在分别取得时、空相关性预测结果的基础上,算法通过样本决定系数将空间与时间两部分预测结果有机整合,形成最终预测结果。算法的试验在真实数据集上展开,将数据集中的实际数据作为缺失值进行预测,并与原数据比较以验证预测算法的准确率。在试验过程中,与其他相关算法进行了比较,试验结果显示,该算法在得出准确预测结果的同时,还能在效率上获得较大提高。 展开更多
关键词 道路工程 缺失值预测 K近邻 大数据 多元回归
下载PDF
土壤属性数据pH缺失的插补方法 被引量:3
18
作者 张逸飞 曹佳 《计算机系统应用》 2021年第1期277-281,共5页
土壤分析研究中属性数据缺失的现象时常发生,为了提高研究结果的可靠性,有必要对土壤属性数据的缺失值插补方法进行研究.从数据挖掘的角度利用多种缺失值处理方法来对缺失值进行插补,以中国主要农田生态系统土壤养分数据库的pH属性为研... 土壤分析研究中属性数据缺失的现象时常发生,为了提高研究结果的可靠性,有必要对土壤属性数据的缺失值插补方法进行研究.从数据挖掘的角度利用多种缺失值处理方法来对缺失值进行插补,以中国主要农田生态系统土壤养分数据库的pH属性为研究对象,并且从真实值和插补值的拟合优度和插补误差两个方面评估各个方法在不同缺失率的数据集上的表现.结果表明,对比其他方法,如多元回归、SVM、神经网络,采用最优参数的KNN和随机森林插补方法对土壤属性数据pH进行插补是有效可行的.KNN和随机森林在不同缺失率的数据集上插补缺失数据pH的MAE、RMSE和R^2的均值分别为0.132和0.131,0.174和0.178,0.775和0.765. 展开更多
关键词 土壤属性数据 PH 缺失数据 K最近邻居 随机森林
下载PDF
基于LSTM神经网络的缺失数据随机功率谱估计 被引量:2
19
作者 赵万祥 张远进 李晓荣 《武汉理工大学学报(信息与管理工程版)》 2022年第6期993-998,共6页
为了解决随机功率谱中的数据缺失问题,提出了一种基于K近邻回归(K neighbors regressor)与长短期记忆神经网络(long short term memory,LSTM)的预测方法。在实际工程应用中,功率谱的精度随着时程样本的增加而提高。但是,由于测量的限制... 为了解决随机功率谱中的数据缺失问题,提出了一种基于K近邻回归(K neighbors regressor)与长短期记忆神经网络(long short term memory,LSTM)的预测方法。在实际工程应用中,功率谱的精度随着时程样本的增加而提高。但是,由于测量的限制或数据损坏,存在一些数据难以获取或丢失的情况。对此,引入了机器学习的方法来还原随机功率谱。首先,利用K近邻回归方法填充缺失的数据以获得完整时间历史的样本。其次,建立相应的LSTM神经网络模型进行数据训练。模拟实验结果为在缺失30%和50%数据情况下,采用K近邻回归和LSTM神经网络的方法可以很好地还原目标功率谱。目标功率谱与机器学习还原后的功率谱之间的比较证明了方法的准确性和有效性。 展开更多
关键词 数据缺失 数据恢复 K近邻回归 LSTM 随机功率谱
下载PDF
基于缺失数据BN参数学习的电信流失客户预测算法 被引量:1
20
作者 赵宇翔 卢光跃 +1 位作者 王航龙 李四维 《电信科学》 2018年第1期52-60,共9页
针对电信客户流失预测问题,在数据缺失情况下,基于贝叶斯网络(Bayesian network,BN),用最近邻算法填补缺失数据,并将两类定性约束融入贝叶斯网络参数学习过程,用以提高流失客户预测精度。仿真及实际数据分析结果表明,所提算法较经典的... 针对电信客户流失预测问题,在数据缺失情况下,基于贝叶斯网络(Bayesian network,BN),用最近邻算法填补缺失数据,并将两类定性约束融入贝叶斯网络参数学习过程,用以提高流失客户预测精度。仿真及实际数据分析结果表明,所提算法较经典的期望最大化(expectation maximization,EM)算法有明显优势,在牺牲代价较小的忠诚客户预测精度的情况下,得到了更高的流失客户预测精度。 展开更多
关键词 贝叶斯网络 参数学习 数据缺失 最近邻算法 定性约束
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部