Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected...Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.展开更多
In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same ti...In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.展开更多
Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper an...Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.展开更多
This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required rea...This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.展开更多
The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) effic...The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.展开更多
This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation ...This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).展开更多
在配电网络的末端,负载的无功波动将会对电网供电电压产生较大的影响,对光伏发电系统并网处系统侧的交流电压进行控制,可以提高系统的电压水平。根据光伏并网系统的结构,采用外环为电压环、内环为并网电流环的双环控制。通过abc/dq0变...在配电网络的末端,负载的无功波动将会对电网供电电压产生较大的影响,对光伏发电系统并网处系统侧的交流电压进行控制,可以提高系统的电压水平。根据光伏并网系统的结构,采用外环为电压环、内环为并网电流环的双环控制。通过abc/dq0变换将并网电流解耦为有功分量和无功分量,引入最大功率点跟踪(maximum power point tracking,MPPT)提供的直流侧电压参考量的闭环控制调节并网电流的有功分量,引入交流侧电压参考量的闭环控制调节并网电流的无功分量,实现了具有MPPT和电压控制能力的三相光伏并网发电技术。仿真结果表明MPPT-电压控制策略既能够实现光伏并网的最大功率点跟踪,也能够控制光伏发电系统接入点的交流电压,进一步提升了光伏并网发电系统的应用前景。展开更多
文摘Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.
文摘In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.
文摘Distributed photovoltaic power (PV) is the main development model of distributed generation. It is necessary to research on dispatching and operation management with large-scale distributed PV connected. This paper analyzes development status, technical requirement and dispatching and operation management situation of distributed PV in Germany and China. Then introduce the preparation of distributed PV dispatching and operation management criterion. Through summarizing the experiences and lessons of large-scale distributed PV development in Germany, it gives advice to the development of distributed PV dispatching and operation management in China.
文摘This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.
文摘The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.
文摘This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).
文摘在配电网络的末端,负载的无功波动将会对电网供电电压产生较大的影响,对光伏发电系统并网处系统侧的交流电压进行控制,可以提高系统的电压水平。根据光伏并网系统的结构,采用外环为电压环、内环为并网电流环的双环控制。通过abc/dq0变换将并网电流解耦为有功分量和无功分量,引入最大功率点跟踪(maximum power point tracking,MPPT)提供的直流侧电压参考量的闭环控制调节并网电流的有功分量,引入交流侧电压参考量的闭环控制调节并网电流的无功分量,实现了具有MPPT和电压控制能力的三相光伏并网发电技术。仿真结果表明MPPT-电压控制策略既能够实现光伏并网的最大功率点跟踪,也能够控制光伏发电系统接入点的交流电压,进一步提升了光伏并网发电系统的应用前景。