Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in thes...Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.展开更多
针对无人机在高密度障碍物的城市环境飞行中路径规划实时性难以满足的问题,在A^(*)算法基础上结合跳点搜索(Jump Point Search, JPS)策略,提出一种Jump A^(*)(JA^(*))算法。将A^(*)算法进行三维扩展,并提出了一种三维对角距离精确表示...针对无人机在高密度障碍物的城市环境飞行中路径规划实时性难以满足的问题,在A^(*)算法基础上结合跳点搜索(Jump Point Search, JPS)策略,提出一种Jump A^(*)(JA^(*))算法。将A^(*)算法进行三维扩展,并提出了一种三维对角距离精确表示了实际路径代价,缩短了搜索时间。在二维JPS策略的基础上拓展得到了三维JPS策略,代替了A^(*)算法中的几何邻居扩展,大大减少了扩展结点数。对障碍物密度0.1~0.4的复杂三维栅格地图进行了路径规划仿真。仿真结果表明,JA^(*)算法相较于A^(*)算法,在高密度多障碍物的近地城市环境下,路径长度几乎不变,评估节点数大幅度减小,搜索速度具有显著提升。展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calcul...Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid.Therefore,it cannot provide carbon factor information beforehand.To address this issue,a prediction model based on the graph attention network is proposed.The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon factor data.The network extracts features and transmits information more suitable for the power system and can flexibly adjust the equivalent topology,thereby increasing the diversity of the structure.Its input and output data are simple,without the power grid parameters.We demonstrated its effect by testing IEEE-39 bus and IEEE-118 bus systems with average error rates of 2.46%and 2.51%.展开更多
Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate des...Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.展开更多
This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new str...This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.展开更多
This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analy...This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.展开更多
Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in...Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.展开更多
Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision usi...Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.展开更多
The role of different grid search computer algorithms for the determination of the thermodynamic properties of water and steam in the p-T and P-S planes has been investigated via experimental and analytical methods.Th...The role of different grid search computer algorithms for the determination of the thermodynamic properties of water and steam in the p-T and P-S planes has been investigated via experimental and analytical methods.The results show that the spline interpolation grid search algorithm and the power grid search algorithm are more efficient,stable and clear than other algorithms.展开更多
Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently a...Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy.展开更多
This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric...This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.展开更多
Multiple QoS modeling and algorithm in grid system is considered. Grid QoS requirements can be formulated as a utility function for each task as a weighted sum of its each dimensional QoS utility functions. Multiple Q...Multiple QoS modeling and algorithm in grid system is considered. Grid QoS requirements can be formulated as a utility function for each task as a weighted sum of its each dimensional QoS utility functions. Multiple QoS constraint resource scheduling optimization in computational grid is distributed to two subproblems: optimization of grid user and grid resource provider. Grid QoS scheduling can be achieved by solving sub problems via an iterative algorithm.展开更多
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth...The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.展开更多
In the dynamic, complex and unbounded Grid systems, failures of Grid resources caused by malicious attacks and hardware failures are inevitable and have an adverse effect on the execution of tasks. To mitigate this pr...In the dynamic, complex and unbounded Grid systems, failures of Grid resources caused by malicious attacks and hardware failures are inevitable and have an adverse effect on the execution of tasks. To mitigate this problem, a makespan and reliability driven (MRD) sufferage scheduling algorithm is designed and implemented. Different from the traditional Grid scheduling algorithms, the algorithm addresses the makespan as well as reliability of tasks. The simulation experimental results show that the MRD sufferage scheduling algorithm can increase reliability of tasks and can trade off reliability against makespan of tasks by adjusting the weighting parameter in its cost function. So it can be applied to the complex Grid computing environment well.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province (BK20211037)the Science and Technology Development Fund of Wuxi (N20201011)the Nanjing University of Information Science and Technology Wuxi Campus District graduate innovation Project。
文摘Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.
文摘针对无人机在高密度障碍物的城市环境飞行中路径规划实时性难以满足的问题,在A^(*)算法基础上结合跳点搜索(Jump Point Search, JPS)策略,提出一种Jump A^(*)(JA^(*))算法。将A^(*)算法进行三维扩展,并提出了一种三维对角距离精确表示了实际路径代价,缩短了搜索时间。在二维JPS策略的基础上拓展得到了三维JPS策略,代替了A^(*)算法中的几何邻居扩展,大大减少了扩展结点数。对障碍物密度0.1~0.4的复杂三维栅格地图进行了路径规划仿真。仿真结果表明,JA^(*)算法相较于A^(*)算法,在高密度多障碍物的近地城市环境下,路径长度几乎不变,评估节点数大幅度减小,搜索速度具有显著提升。
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
基金This work is supposed by the Science and Technology Projects of China Southern Power Grid(YNKJXM20222402).
文摘Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid.Therefore,it cannot provide carbon factor information beforehand.To address this issue,a prediction model based on the graph attention network is proposed.The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon factor data.The network extracts features and transmits information more suitable for the power system and can flexibly adjust the equivalent topology,thereby increasing the diversity of the structure.Its input and output data are simple,without the power grid parameters.We demonstrated its effect by testing IEEE-39 bus and IEEE-118 bus systems with average error rates of 2.46%and 2.51%.
基金This work was supported in part by the Natural Science Foundation of the Education Department of Henan Province(Grant 22A520025)the National Natural Science Foundation of China(Grant 61975053)the National Key Research and Development of Quality Information Control Technology for Multi-Modal Grain Transportation Efficient Connection(2022YFD2100202).
文摘Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.
基金Grant from LIESMARS (No.WKL(06)0302)the Basic Research Grant of CASM(No.G7721)
文摘This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.
基金supported by the National HighTech ResearchDevelopment Program of China (863) under Grant No.2012AA050801
文摘This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.
基金The Natural Science Foundation of Hunan Province,China(No.2020JJ4601)Open Fund of the Key Laboratory of Highway Engi-neering of Ministry of Education(No.kfj190203).
文摘Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains.
基金This work was supported by“The National Natural Science Foundation of China(No.41404033)”“The National Science and Technology Basic Work of China(No.2015FY310200)”+1 种基金“The State Key Program of National Natural Science Foundation of China(No.41730109)”“The Jiangsu Dual Creative Teams Program Project Awarded in 2017”and thanks for the data from IGS and iGMAS。
文摘Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.
文摘The role of different grid search computer algorithms for the determination of the thermodynamic properties of water and steam in the p-T and P-S planes has been investigated via experimental and analytical methods.The results show that the spline interpolation grid search algorithm and the power grid search algorithm are more efficient,stable and clear than other algorithms.
文摘Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas --partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy.
基金the National Key Research and Development Program of China(Grant No.2020YFB1707804)the 2018 Key Projects of Philosophy and Social Sciences Research(Grant No.18JZD032)Natural Science Foundation of Hebei Province(Grant No.G2020403008).
文摘This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.
基金the National Natural Science Foundation of China (60402028, 60672137) Wuhan Yonger Dawning Foundation (20045006071-15)China Specialized Research Fund for the Doctoral Program of Higher Eduction (20060497015).
文摘Multiple QoS modeling and algorithm in grid system is considered. Grid QoS requirements can be formulated as a utility function for each task as a weighted sum of its each dimensional QoS utility functions. Multiple QoS constraint resource scheduling optimization in computational grid is distributed to two subproblems: optimization of grid user and grid resource provider. Grid QoS scheduling can be achieved by solving sub problems via an iterative algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002086)the Shanghai Leading Academic Discipline Project(Grant No.J50103)
文摘The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.
文摘In the dynamic, complex and unbounded Grid systems, failures of Grid resources caused by malicious attacks and hardware failures are inevitable and have an adverse effect on the execution of tasks. To mitigate this problem, a makespan and reliability driven (MRD) sufferage scheduling algorithm is designed and implemented. Different from the traditional Grid scheduling algorithms, the algorithm addresses the makespan as well as reliability of tasks. The simulation experimental results show that the MRD sufferage scheduling algorithm can increase reliability of tasks and can trade off reliability against makespan of tasks by adjusting the weighting parameter in its cost function. So it can be applied to the complex Grid computing environment well.