This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new str...This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.展开更多
The methodology of catchment extraction especially from regular grid digital elevation models (DEMs) is briefly reviewed. Then an efficient algorithm, which combines vector process and traditional neighbourhood raster...The methodology of catchment extraction especially from regular grid digital elevation models (DEMs) is briefly reviewed. Then an efficient algorithm, which combines vector process and traditional neighbourhood raster process, is designed for extracting the catchments and subcatchments from depressionless DEMs. The catchment area of each river in the grid DEM data is identified and delineated, then is divided into subcatchments as required. Compared to traditional processes, this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena. Last, the algorithm is tested with a set of DEMs of different sizes, and the result proves that the computation efficiency and accuracy are better than existent methods.展开更多
For designing and optimizing the reactor core of modular pebble-bed fluoride salt-cooled high-temperature reactor(PB-FHR),it is of importance to simulate the coupled fluid and particle flow due to strong coolantpebble...For designing and optimizing the reactor core of modular pebble-bed fluoride salt-cooled high-temperature reactor(PB-FHR),it is of importance to simulate the coupled fluid and particle flow due to strong coolantpebble interactions.Computational fluid dynamics and discrete element method(DEM) coupling approach can be used to track particles individually while it requires a fluid cell being greater than the pebble diameter.However,the large size of pebbles makes the fluid grid too coarse to capture the complicated flow pattern.To solve this problem,a two-grid approach is proposed to calculate interphase momentum transfer between pebbles and coolant without the constraint on the shape and size of fluid meshes.The solid velocity,fluid velocity,fluid pressure and void fraction are mapped between hexahedral coarse particle grid and tine fluid grid.Then the total interphase force can be calculated independently to speed up computation.To evaluate suitability of this two-grid approach,the pressure drop and minimum fluidization velocity of a fluidized bed were predicted,and movements of the pebbles in complex flow field were studied experimentally and numerically.The spouting fluid through a central inlet pipe of a scaled visible PB-FHR core facility was set up to provide the complex flow field.Water was chosen as Liquid to simulate the molten salt coolant,and polypropylene balls were used to simulate the pebble fuels.Results show that the pebble flow pattern captured from experiment agrees well with the simulation from two-grid approach,hence the applicability of the two-grid approach for the later PB-FHR core design.展开更多
基金Grant from LIESMARS (No.WKL(06)0302)the Basic Research Grant of CASM(No.G7721)
文摘This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.
文摘The methodology of catchment extraction especially from regular grid digital elevation models (DEMs) is briefly reviewed. Then an efficient algorithm, which combines vector process and traditional neighbourhood raster process, is designed for extracting the catchments and subcatchments from depressionless DEMs. The catchment area of each river in the grid DEM data is identified and delineated, then is divided into subcatchments as required. Compared to traditional processes, this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena. Last, the algorithm is tested with a set of DEMs of different sizes, and the result proves that the computation efficiency and accuracy are better than existent methods.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(No.XD02001002)
文摘For designing and optimizing the reactor core of modular pebble-bed fluoride salt-cooled high-temperature reactor(PB-FHR),it is of importance to simulate the coupled fluid and particle flow due to strong coolantpebble interactions.Computational fluid dynamics and discrete element method(DEM) coupling approach can be used to track particles individually while it requires a fluid cell being greater than the pebble diameter.However,the large size of pebbles makes the fluid grid too coarse to capture the complicated flow pattern.To solve this problem,a two-grid approach is proposed to calculate interphase momentum transfer between pebbles and coolant without the constraint on the shape and size of fluid meshes.The solid velocity,fluid velocity,fluid pressure and void fraction are mapped between hexahedral coarse particle grid and tine fluid grid.Then the total interphase force can be calculated independently to speed up computation.To evaluate suitability of this two-grid approach,the pressure drop and minimum fluidization velocity of a fluidized bed were predicted,and movements of the pebbles in complex flow field were studied experimentally and numerically.The spouting fluid through a central inlet pipe of a scaled visible PB-FHR core facility was set up to provide the complex flow field.Water was chosen as Liquid to simulate the molten salt coolant,and polypropylene balls were used to simulate the pebble fuels.Results show that the pebble flow pattern captured from experiment agrees well with the simulation from two-grid approach,hence the applicability of the two-grid approach for the later PB-FHR core design.