臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首...臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首先交互模块(IC)可以通过一系列的卷积操作来捕捉短期上下文信息,其次层融合模块(LF)可以融合不同层的空间信息来获得上一时刻丰富的空间信息,最后差分时空LSTM模块(DSTM)将捕捉到的时间信息和空间信息进行统一建模实现臭氧浓度预测。所构建模型分别与卷积LSTM网络(ConvLSTM)、预测循环神经网络(PredRNN)以及Memory in Memory网络(MIM)模型在河北省气象局提供的臭氧浓度数据上进行了对比分析,ST-IDN模型的平均绝对误差分别降低了19.836%、12.924%、7.506%。实验结果表明,所提出的模型能够提高臭氧浓度的预测精度。展开更多
面对国家电网公司电子招投标业务的快速扩展,供应商在海量的招标文件中迅速而精确地提取相关信息变得尤为重要。本研究开发了一种适配国网招标文件特征的解析技术,旨在将数据结构化和可视化,以帮助供应商及时锁定投标机会并支持决策制...面对国家电网公司电子招投标业务的快速扩展,供应商在海量的招标文件中迅速而精确地提取相关信息变得尤为重要。本研究开发了一种适配国网招标文件特征的解析技术,旨在将数据结构化和可视化,以帮助供应商及时锁定投标机会并支持决策制定。通过对招标文件进行篇章分析、表格检测和文本纠错处理,获取了有效的数据输入。采用五种不同的解析算法模型对数据进行分析,并基于标注数据评估各模型性能。利用国网招标文件样本,经过模型定制与调优,构建了一个集成双向长短记忆网络(Bi-directional long short-term memory,Bi-LSTM)、条件随机场(conditional random fields,CRF)的解析模型。使用823份实际招标文件样本对模型进行了训练和对比测试,结果显示双向长短记忆融合模型的性能指标优于BERT+Bi-LSTM模型。此外,CRF层能够通过学习自动引入的约束条件来确保预测结果的准确性,从而显著提升解析效果。展开更多
电网智能化升级改造将传统电网与先进的信息、智能技术相融合,实现电力行业的根本性变革。智能电表是智能电网系统中收集用户用电信息的代表性边缘设备,当前智能电表收集的用电量数据存在维度低、波动性强等特征,造成对未来用电情况难...电网智能化升级改造将传统电网与先进的信息、智能技术相融合,实现电力行业的根本性变革。智能电表是智能电网系统中收集用户用电信息的代表性边缘设备,当前智能电表收集的用电量数据存在维度低、波动性强等特征,造成对未来用电情况难以预测的问题;同时对于未来边缘设备端用电量的预测,其他相关特征信息的不可得,此时研究基于单变量特征的用电量预测至关重要。为此,提出一种基于双向长短期循环记忆循环神经网络(Bi-directional Long Short-Term Memory,Bi-LSTM)的单变量家庭用电量预测模型,Bi-LSTM模型能够充分利用上下文的信息实现更准确的预测效果。通过西班牙某市真实的智能电表数据对提出的模型进行了验证,实验结果表明,该模型的预测性能相比传统LSTM、SVM方法有进一步的提高。展开更多
文摘臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首先交互模块(IC)可以通过一系列的卷积操作来捕捉短期上下文信息,其次层融合模块(LF)可以融合不同层的空间信息来获得上一时刻丰富的空间信息,最后差分时空LSTM模块(DSTM)将捕捉到的时间信息和空间信息进行统一建模实现臭氧浓度预测。所构建模型分别与卷积LSTM网络(ConvLSTM)、预测循环神经网络(PredRNN)以及Memory in Memory网络(MIM)模型在河北省气象局提供的臭氧浓度数据上进行了对比分析,ST-IDN模型的平均绝对误差分别降低了19.836%、12.924%、7.506%。实验结果表明,所提出的模型能够提高臭氧浓度的预测精度。
文摘面对国家电网公司电子招投标业务的快速扩展,供应商在海量的招标文件中迅速而精确地提取相关信息变得尤为重要。本研究开发了一种适配国网招标文件特征的解析技术,旨在将数据结构化和可视化,以帮助供应商及时锁定投标机会并支持决策制定。通过对招标文件进行篇章分析、表格检测和文本纠错处理,获取了有效的数据输入。采用五种不同的解析算法模型对数据进行分析,并基于标注数据评估各模型性能。利用国网招标文件样本,经过模型定制与调优,构建了一个集成双向长短记忆网络(Bi-directional long short-term memory,Bi-LSTM)、条件随机场(conditional random fields,CRF)的解析模型。使用823份实际招标文件样本对模型进行了训练和对比测试,结果显示双向长短记忆融合模型的性能指标优于BERT+Bi-LSTM模型。此外,CRF层能够通过学习自动引入的约束条件来确保预测结果的准确性,从而显著提升解析效果。
文摘电网智能化升级改造将传统电网与先进的信息、智能技术相融合,实现电力行业的根本性变革。智能电表是智能电网系统中收集用户用电信息的代表性边缘设备,当前智能电表收集的用电量数据存在维度低、波动性强等特征,造成对未来用电情况难以预测的问题;同时对于未来边缘设备端用电量的预测,其他相关特征信息的不可得,此时研究基于单变量特征的用电量预测至关重要。为此,提出一种基于双向长短期循环记忆循环神经网络(Bi-directional Long Short-Term Memory,Bi-LSTM)的单变量家庭用电量预测模型,Bi-LSTM模型能够充分利用上下文的信息实现更准确的预测效果。通过西班牙某市真实的智能电表数据对提出的模型进行了验证,实验结果表明,该模型的预测性能相比传统LSTM、SVM方法有进一步的提高。