With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant dr...With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant driving effect(derivative value),and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core.Therefore,by analyzing the characterization of the derivative value of smart grid driven by investment,this paper constructs the evaluation index system of the derivative value of smart grid investment including 11 indicators.Then,the hybrid evaluation model of the derivative value of smart grid investment is developed based on anti-entropy weight(AEW),level based weight assessment(LBWA),and measurement alternatives and ranking according to the compromise solution(MARCOS)techniques.The results of case analysis show that for SG investment,the value of sustainable development can better reflect its derivative value,and when smart grid performs poorly in promoting renewable energy consumption,improving primary energy efficiency,and improving its own fault resistance,the driving force of its investment for future sustainable development will decline significantly,making the grid investment lack derivative value.In addition,smart grid investment needs to pay attention to the economy of investment,which is an important guarantee to ensure that the power grid has sufficient and stable sources of investment funds.Finally,compared with three comparison models,the proposed hybrid multi-criteria decision-making(MCDM)model can better improve the decision-making efficiency on the premise of ensuring robustness.展开更多
This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric...This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.展开更多
文摘With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant driving effect(derivative value),and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core.Therefore,by analyzing the characterization of the derivative value of smart grid driven by investment,this paper constructs the evaluation index system of the derivative value of smart grid investment including 11 indicators.Then,the hybrid evaluation model of the derivative value of smart grid investment is developed based on anti-entropy weight(AEW),level based weight assessment(LBWA),and measurement alternatives and ranking according to the compromise solution(MARCOS)techniques.The results of case analysis show that for SG investment,the value of sustainable development can better reflect its derivative value,and when smart grid performs poorly in promoting renewable energy consumption,improving primary energy efficiency,and improving its own fault resistance,the driving force of its investment for future sustainable development will decline significantly,making the grid investment lack derivative value.In addition,smart grid investment needs to pay attention to the economy of investment,which is an important guarantee to ensure that the power grid has sufficient and stable sources of investment funds.Finally,compared with three comparison models,the proposed hybrid multi-criteria decision-making(MCDM)model can better improve the decision-making efficiency on the premise of ensuring robustness.
基金the National Key Research and Development Program of China(Grant No.2020YFB1707804)the 2018 Key Projects of Philosophy and Social Sciences Research(Grant No.18JZD032)Natural Science Foundation of Hebei Province(Grant No.G2020403008).
文摘This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.