In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process,a hot gap test and a breakdown time test are carried out to obtai...In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process,a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 k W operation mode.Meanwhile,the fluid simulation method and particle-in-cell-Monte Carlo collision(PICMCC) method are adopted to simulate the ion extraction process according to the previous test results.The numerical calculation results are verified by the ion thruster performance test.The results show that after about 1.2 h operation,the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm,while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium,and the hot gap is almost unchanged.In addition,the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value.Fluid simulation results show that the plasma density of the screen grid is in the range 6?×10^(17)–6?×?10^(18) m^(13) and displays a parabolic characteristic,while the electron temperature gradually increases along the axial direction.The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant.Meanwhile,the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap.The ion beam current has optimal perveance status without thermal deformation,and the intercepted current of the accelerator grid and the decelerator grid are 3.65 m A and 6.26 m A,respectively.Furthermore,under the effect of thermal deformation,the ion beam current has over-perveance status,and the intercepted current of the accelerator grid and the decelerator grid are 10.46 m A and 18.24 m A,respectively.Performance test results indicate that the breakdown times increase obviously.The intercepted current of the accelerator grid and the decelerator grid increases to 13 m A and 16.5 m A,respectively,due to the change in the hot gap after 1.5 h operation.The numerical calculation results are well consistent with performance test results,and the error comes mainly from the test uncertainty of the hot gap.展开更多
In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedra...In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.展开更多
The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requir...The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed.展开更多
The use of wind power has grown rapidly in recent years.Wind power is a clean source of energy,but can have negative impacts on the distribution grid.The influence of large-scale wind power integration on the safe and...The use of wind power has grown rapidly in recent years.Wind power is a clean source of energy,but can have negative impacts on the distribution grid.The influence of large-scale wind power integration on the safe and stable operation of a power system cannot be ignored.It is necessary and urgent to achieve grid adaptability for wind turbines in China.Using a 35 kV/6 MVA grid simulator,the performance of a grid is investigated by simulation.Typical grid disturbances such as voltage deviation,frequency fluctuation,voltage unbalance,and distortion can be simulated.A grid adaptability testing methodology was developed and applied to a doubly fed wind turbine with a focus on analyzing real test data to ascertain its three-phase voltage unbalance adaptability,which was successfully demonstrated.The methodology can also be used to guide other grid adaptability tests.展开更多
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer ...Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.展开更多
In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order ...In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.展开更多
基金supported by the National Key Laboratory Fund of Science and Technology on Vacuum Technology & Physics (Grant No.6142207030103)National Natural Science Foundation of China (Grant No.11702123)
文摘In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process,a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 k W operation mode.Meanwhile,the fluid simulation method and particle-in-cell-Monte Carlo collision(PICMCC) method are adopted to simulate the ion extraction process according to the previous test results.The numerical calculation results are verified by the ion thruster performance test.The results show that after about 1.2 h operation,the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm,while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium,and the hot gap is almost unchanged.In addition,the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value.Fluid simulation results show that the plasma density of the screen grid is in the range 6?×10^(17)–6?×?10^(18) m^(13) and displays a parabolic characteristic,while the electron temperature gradually increases along the axial direction.The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant.Meanwhile,the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap.The ion beam current has optimal perveance status without thermal deformation,and the intercepted current of the accelerator grid and the decelerator grid are 3.65 m A and 6.26 m A,respectively.Furthermore,under the effect of thermal deformation,the ion beam current has over-perveance status,and the intercepted current of the accelerator grid and the decelerator grid are 10.46 m A and 18.24 m A,respectively.Performance test results indicate that the breakdown times increase obviously.The intercepted current of the accelerator grid and the decelerator grid increases to 13 m A and 16.5 m A,respectively,due to the change in the hot gap after 1.5 h operation.The numerical calculation results are well consistent with performance test results,and the error comes mainly from the test uncertainty of the hot gap.
基金Projects(51109095,51179075,51309119)supported by the National Natural Science Foundation of ChinaProject(BE2012131)supported by Science and Technology Support Program of Jiangsu Province,China
文摘In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.
基金support through GrantNo.(600005-Z17X0234)Quanzhou Science and Technology Bureau for financial support through Grant No.(2018Z010)+2 种基金Huaqiao University through Grant No.(17BS201)the Fujian Provincial Department of Science and Technology for financial support through Grant(2018J05121)Authors are also grateful for financial support from the Fujian Provincial Department of Science and Technology through Grant Nos.(2021I0014)and(2018J05121).
文摘The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed.
文摘The use of wind power has grown rapidly in recent years.Wind power is a clean source of energy,but can have negative impacts on the distribution grid.The influence of large-scale wind power integration on the safe and stable operation of a power system cannot be ignored.It is necessary and urgent to achieve grid adaptability for wind turbines in China.Using a 35 kV/6 MVA grid simulator,the performance of a grid is investigated by simulation.Typical grid disturbances such as voltage deviation,frequency fluctuation,voltage unbalance,and distortion can be simulated.A grid adaptability testing methodology was developed and applied to a doubly fed wind turbine with a focus on analyzing real test data to ascertain its three-phase voltage unbalance adaptability,which was successfully demonstrated.The methodology can also be used to guide other grid adaptability tests.
基金supported financially by the Shanghai Pujiang Program (07pj14072)the Shanghai Leading Academic Disci-pline Project (J05051)
文摘Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11672158, and 11172154)the National Key Basic Research and Development Program (Grant No. 2014CB744100)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
文摘In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.