Submission Deadline: 15 October 2010The electric industry is being transformed from a centralized network to one that is less centralized and allows more consumer interaction in the form of a smart grid. A smart grid...Submission Deadline: 15 October 2010The electric industry is being transformed from a centralized network to one that is less centralized and allows more consumer interaction in the form of a smart grid. A smart grid is a power transmission and distribution network that can incorporate millions of sensors all connected through an advanced, two-way communications and data acquisition system to provide real-time monitoring, diagnosis and control. Smart grid enables more efficient, reliable and secure energy service, facilitate grid-integration of renewable systems and energy storage, and better routing of power and demand management. The move to a smarter grid promises to change the industry's entire business model and its relationship with all stakeholders, involving and affecting power companies, regulators, energy service providers, technology and automation vendors, and all consumers of electric power.展开更多
The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy ...The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.展开更多
The problem of profile matching in electronic social networks asks to find those offering profiles of actors in the network fitting best to a given search profile. In this article this problem is mathematically formul...The problem of profile matching in electronic social networks asks to find those offering profiles of actors in the network fitting best to a given search profile. In this article this problem is mathematically formulated as an optimization problem. For this purpose the underlying search space and the objective function are defined precisely. In particular, data structures of search and offering profiles are proposed, as well as a function measuring the matching of the attributes of a search profile with the corresponding attributes of an offering profile. This objective function, given in Equation (29), is composed of the partial matching degrees for numerical attributes, discrete non-numerical attributes, and fields of interests, respectively. For the matching degree of numerical profile attributes a fuzzy value approach is presented, see Equation (22), whereas for the matching degree of fields of interest a new measure function is introduced in Equation (26). The resulting algorithm is illustrated by a concrete example. It not only is applicable to electronic social networks but also could be adapted for resource discovery in grid computation or in matchmaking energy demand and supply in electrical power systems and smart grids, especially to efficiently integrate renewable energy resources.展开更多
The quantity and heterogeneity of intelligent energy generation and consumption terminals in the smart grid are increasing drastically over the years.These edge devices have created significant pressures on cloud comp...The quantity and heterogeneity of intelligent energy generation and consumption terminals in the smart grid are increasing drastically over the years.These edge devices have created significant pressures on cloud computing(CC)system and centralised control for data storage and processing in realtime operation and control.The integration of edge computing(EC)can effectively alleviate the pressure and conduct real-time processing while ensuring data security.This paper conducts an extensive review of the EC-CC computing system and its application to the smart grid,which will integrate a vast number of dispersed devices.It first comprehensively describes the relationship among CC,fog computing(FC),and EC to provide a theoretical basis for the differentiation.It then introduces the architecture of the EC-CC computing system in the smart grid,where the architecture consists of both hardware structure and software platforms,and key technologies are introduced to support functionalities.Thereafter,the application to the smart grid is discussed across the whole supply chain,including energy generation,transportation(transmission and distribution networks),and consumption.Finally,future research opportunities and challenges of EC-CC while being applied to the smart grid are outlined.This paper can inform future research and industrial exploitations of these new technologies to enable a highly efficient smart grid under decarbonisation,digitalisation,and decentralisation transitions.展开更多
倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。...倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。在实验室完成由两只MOSFET和驱动、保护等电路构成的半桥FC-IPEM,并采用它构成同步整流Buck变换器,对半桥FC-IPEM进行电气性能测试,最后给出测试结果。展开更多
文摘Submission Deadline: 15 October 2010The electric industry is being transformed from a centralized network to one that is less centralized and allows more consumer interaction in the form of a smart grid. A smart grid is a power transmission and distribution network that can incorporate millions of sensors all connected through an advanced, two-way communications and data acquisition system to provide real-time monitoring, diagnosis and control. Smart grid enables more efficient, reliable and secure energy service, facilitate grid-integration of renewable systems and energy storage, and better routing of power and demand management. The move to a smarter grid promises to change the industry's entire business model and its relationship with all stakeholders, involving and affecting power companies, regulators, energy service providers, technology and automation vendors, and all consumers of electric power.
文摘The environmental pollution,as well as gradual depletion of mineral resources has encouraged the world to move into renewable energy sources for generation of electricity.At present,the cost of using renewable energy sources,such as sunshine and wind in electricity generation has significantly reduced.This has led to higher penetration of renewable energy into the grid.However,both wind and solar energy photovoltaics are unpredictable energies which reduce the reliability and resiliency of the grid.The integration of battery energy storage system in the grid is one of the proficient solutions to the problem.There are numerous grid connected renewable energy based battery projects that have been deployed in different countries around the world for research,development and commercial application.This review paper will discuss some of the projects based on the battery connected wind and solar energy power generation systems that can operate both in grid connected and grid independent modes.The projects discussed in this paper are selected based on the availability of information.The battery energy storage system(BESS)incorporated in each of the project is found to increase the stability and performance of the grid by addressing the mismatch between power generation and the load of the grid created due to intermittent nature of renewable energy sources.
文摘The problem of profile matching in electronic social networks asks to find those offering profiles of actors in the network fitting best to a given search profile. In this article this problem is mathematically formulated as an optimization problem. For this purpose the underlying search space and the objective function are defined precisely. In particular, data structures of search and offering profiles are proposed, as well as a function measuring the matching of the attributes of a search profile with the corresponding attributes of an offering profile. This objective function, given in Equation (29), is composed of the partial matching degrees for numerical attributes, discrete non-numerical attributes, and fields of interests, respectively. For the matching degree of numerical profile attributes a fuzzy value approach is presented, see Equation (22), whereas for the matching degree of fields of interest a new measure function is introduced in Equation (26). The resulting algorithm is illustrated by a concrete example. It not only is applicable to electronic social networks but also could be adapted for resource discovery in grid computation or in matchmaking energy demand and supply in electrical power systems and smart grids, especially to efficiently integrate renewable energy resources.
文摘The quantity and heterogeneity of intelligent energy generation and consumption terminals in the smart grid are increasing drastically over the years.These edge devices have created significant pressures on cloud computing(CC)system and centralised control for data storage and processing in realtime operation and control.The integration of edge computing(EC)can effectively alleviate the pressure and conduct real-time processing while ensuring data security.This paper conducts an extensive review of the EC-CC computing system and its application to the smart grid,which will integrate a vast number of dispersed devices.It first comprehensively describes the relationship among CC,fog computing(FC),and EC to provide a theoretical basis for the differentiation.It then introduces the architecture of the EC-CC computing system in the smart grid,where the architecture consists of both hardware structure and software platforms,and key technologies are introduced to support functionalities.Thereafter,the application to the smart grid is discussed across the whole supply chain,including energy generation,transportation(transmission and distribution networks),and consumption.Finally,future research opportunities and challenges of EC-CC while being applied to the smart grid are outlined.This paper can inform future research and industrial exploitations of these new technologies to enable a highly efficient smart grid under decarbonisation,digitalisation,and decentralisation transitions.
文摘倒装芯片(Flip Chip,FC)技术广泛应用于微电子封装中,将该技术引入到三维的集成电力电子模块(Integrated Power Electronics Module,IPEM)的封装中,可以构成倒装芯片集成电力电子模块(FC-IPEM)。该文详细介绍FC-IPEM的结构和组装程序。在实验室完成由两只MOSFET和驱动、保护等电路构成的半桥FC-IPEM,并采用它构成同步整流Buck变换器,对半桥FC-IPEM进行电气性能测试,最后给出测试结果。