针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提...针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提取,并对特征点进行暴力匹配。之后,通过GMS算法对图像中的粗匹配特征点进行网格划分,利用网格中正确匹配点邻域内具有较高特征支持量的原理对粗匹配对进行筛选;并引入图像匹配对在进行矢量运算时VCS不超过某一设定阈值的原理对匹配对进行部分剔除,以利于算法后期的快速收敛。最后,运用GCRANSAC算法进行局部最优模型拟合,得到精匹配特征点集,实现高精度的图像配准和拼接。通过与ASIFT+RANSAC、GMS、AKAZE+RANSAC、GMS+GC-RANSAC等算法对比,实验结果表明,该算法在平均匹配精度上提高了30.34%,平均匹配时间缩短0.54 s。展开更多
Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorit...Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.展开更多
文摘针对当前图像配准算法配准时间过长、配准正确率低等问题,提出一种基于网格运动统计(GMS)、矢量系数相似度(VCS)与图割随机抽样一致性(GC-RANSAC)的图像配准算法。首先,通过ORB(Oriented FAST and Rotated BRIEF)算法对图像进行特征点提取,并对特征点进行暴力匹配。之后,通过GMS算法对图像中的粗匹配特征点进行网格划分,利用网格中正确匹配点邻域内具有较高特征支持量的原理对粗匹配对进行筛选;并引入图像匹配对在进行矢量运算时VCS不超过某一设定阈值的原理对匹配对进行部分剔除,以利于算法后期的快速收敛。最后,运用GCRANSAC算法进行局部最优模型拟合,得到精匹配特征点集,实现高精度的图像配准和拼接。通过与ASIFT+RANSAC、GMS、AKAZE+RANSAC、GMS+GC-RANSAC等算法对比,实验结果表明,该算法在平均匹配精度上提高了30.34%,平均匹配时间缩短0.54 s。
基金supported by the National Natural Science Foundation of China(6160304061973036).
文摘Aerial image sequence mosaicking is one of the chal-lenging research fields in computer vision.To obtain large-scale orthophoto maps with object detection information,we propose a vision-based image mosaicking algorithm without any extra location data.According to object detection results,we define a complexity factor to describe the importance of each input ima-ge and dynamically optimize the feature extraction process.The feature points extraction and matching processes are mainly guided by the speeded-up robust features(SURF)and the grid motion statistic(GMS)algorithm respectively.A robust refer-ence frame selection method is proposed to eliminate the trans-formation distortion by searching for the center area based on overlaps.Besides,the sparse Levenberg-Marquardt(LM)al-gorithm and the heavy occluded frames removal method are ap-plied to reduce accumulated errors and further improve the mo-saicking performance.The proposed algorithm is performed by using multithreading and graphics processing unit(GPU)accel-eration on several aerial image datasets.Extensive experiment results demonstrate that our algorithm outperforms most of the existing aerial image mosaicking methods in visual quality while guaranteeing a high calculation speed.