期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
IBN Rings and Orderings on Grothendieck Groups 被引量:6
1
作者 Tong Wenting Department of Mathematics Nanjing University Nanjing,210008 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1994年第3期225-230,共6页
Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup&... Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0. 展开更多
关键词 IBN Rings and Orderings on grothendieck groups MATH PSF
原文传递
Generating Relations for Grothendieck Groups of Trivial Extension Algebras
2
作者 Gui Yu YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第8期1645-1654,共10页
In this paper we describe explicitly the generating relations for the Grothendieck groups of trivial extension algebras of tame hereditary algebras.
关键词 Trivial extension Auslander-Reiten sequence grothendieck group generating relation group
原文传递
The Zero-divisor Graphs of Abelian Regular Rings
3
作者 卢丹诚 佟文廷 《Northeastern Mathematical Journal》 CSCD 2004年第3期339-348,共10页
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that... We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied. 展开更多
关键词 zero-divisor graph abelian regular ring grothendieck group
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部