The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, i...The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.展开更多
利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一...利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一个强风暴过程进行了数值模拟,对雷达观测数据、现场声学多普勒流速剖面仪(acoustic Doppler current profilers,ADCP)调查数据和数值模拟结果进行比对分析发现,模型模拟的水位变化与ADCP测量结果一致,WERA所观测到的有效波高和ADCP结果比较吻合,模型模拟的ADCP站位的流速相位、大小与雷达观测结果比较接近,与ADCP的结果有一定偏差。雷达观测的海区流场结果与模型反映趋势基本一致,但是在近岸方向上变化较大,其原因可能与ADCP的投放位置、模型的分辨率设置等因素有关。高频地波雷达系统是海岸带动力环境观测的一个有效工具,在实际应用中有着广泛的前景。展开更多
文摘The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.
文摘利用两台高频地波雷达(ground wave radar,WERA)站对山东半岛北部雷达覆盖海区的浪、流场进行了观测,并且利用海洋-大气-波浪耦合沉积输运模型(coupled-ocean-atmosphere-wave-sediment transport modeling system,COAWST)对该区域的一个强风暴过程进行了数值模拟,对雷达观测数据、现场声学多普勒流速剖面仪(acoustic Doppler current profilers,ADCP)调查数据和数值模拟结果进行比对分析发现,模型模拟的水位变化与ADCP测量结果一致,WERA所观测到的有效波高和ADCP结果比较吻合,模型模拟的ADCP站位的流速相位、大小与雷达观测结果比较接近,与ADCP的结果有一定偏差。雷达观测的海区流场结果与模型反映趋势基本一致,但是在近岸方向上变化较大,其原因可能与ADCP的投放位置、模型的分辨率设置等因素有关。高频地波雷达系统是海岸带动力环境观测的一个有效工具,在实际应用中有着广泛的前景。