The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial d...The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.展开更多
Long-term measurements of air, near-surface (soil) and ground temperatures that were collected between 1994 and 2013 at the drill site of the Geothermal Climate Change Observatory (Prague) were analyzed to understand ...Long-term measurements of air, near-surface (soil) and ground temperatures that were collected between 1994 and 2013 at the drill site of the Geothermal Climate Change Observatory (Prague) were analyzed to understand the relationship between these variables and to reveal the mechanisms of heat transport at the land-atmosphere boundary layer. The 2D Thermal Orbit (TO) method was applied to detect regularities that were hidden in noisy and highly variable temperature time series. The results showed that the temperatures at shallow depths were affected by surface air temperature (SAT) variations on seasonal and annual time scales and could be regarded as an accurate proxy for low frequency temperature variations at the Earth’s surface. Only low-frequency/ high-amplitude surface temperature variations penetrate into the subsurface because of strong damping and the filtering effect of the ground surface. The borehole temperatures have good potential to capture temperature variations (periodicities) over long time scales that cannot be detected in the SAT series themselves because of the interference of higher frequency noise. The TO technique is a useful and powerful tool to quickly obtain diagnostics of the presence of long periodicities in borehole temperature time series.展开更多
The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numeri...The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial (the ground profile) and time series analysis in the extremely snowy winter of 2012-2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011-2012 based on the measured data collected by 63 meteorological stations, Our results illustrate the positive (warmer) effect of snow cover on the ground temperature (GT) on the daily basis, the highest difference between GT and daily mean air temperature (DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the resnonse denth of ground to the alteration of snow depth is far more than 40 cm.展开更多
Permafrost is one of the largest elements of the terrestrial cryosphere and is extremely sensitive to climate change.Based on mean annual ground temperature(MAGT)data from 189 boreholes on the Qinghai–Tibet Plateau(Q...Permafrost is one of the largest elements of the terrestrial cryosphere and is extremely sensitive to climate change.Based on mean annual ground temperature(MAGT)data from 189 boreholes on the Qinghai–Tibet Plateau(QTP),terrain factors,and climate data from China Meteorological Forcing Dataset,we propose a new mean annual ground air temperature(MAGAT)statistical model between meteorological parameters with subsurface temperatures to simulate permafrost distribution and variation of MAGT on the QTP over the past three decades(1981–2010).Validation of the model with MAGT data from 13 boreholes and permafrost maps of the QTP indicated that the MAGAT model is applicable to simulate the distribution and evolution of permafrost on the QTP.Simulation results show that the spatiotemporal MAGT of permafrost significantly increased by 0.37℃,or 0.25℃/10 yr,and the total area of permafrost decreased by 2.48×10^(5)km^(2) on the QTP over the past three decades.Regionally,the changes of permafrost in the southwestern QTP were greater than other regions of the QTP.展开更多
基金Foundation: National Natural Science Foundation of China, No.40471026 National Fund for "Western Major Plan" Broadly Item, No.90302006+1 种基金 Knowledge Innovation Project of CAS, No.220014-03 The National Basic Research Program (973 Program), No.2005CB422003
文摘The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.
文摘Long-term measurements of air, near-surface (soil) and ground temperatures that were collected between 1994 and 2013 at the drill site of the Geothermal Climate Change Observatory (Prague) were analyzed to understand the relationship between these variables and to reveal the mechanisms of heat transport at the land-atmosphere boundary layer. The 2D Thermal Orbit (TO) method was applied to detect regularities that were hidden in noisy and highly variable temperature time series. The results showed that the temperatures at shallow depths were affected by surface air temperature (SAT) variations on seasonal and annual time scales and could be regarded as an accurate proxy for low frequency temperature variations at the Earth’s surface. Only low-frequency/ high-amplitude surface temperature variations penetrate into the subsurface because of strong damping and the filtering effect of the ground surface. The borehole temperatures have good potential to capture temperature variations (periodicities) over long time scales that cannot be detected in the SAT series themselves because of the interference of higher frequency noise. The TO technique is a useful and powerful tool to quickly obtain diagnostics of the presence of long periodicities in borehole temperature time series.
基金Under the auspices of National Natural Science Foundation of China(No.41471289,41301368)Natural Science Foundation of Jilin Province(No.20140101158JC)Foundation of State Key Laboratory of Remote Sensing Science(No.OFSLRSS201517)
文摘The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial (the ground profile) and time series analysis in the extremely snowy winter of 2012-2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011-2012 based on the measured data collected by 63 meteorological stations, Our results illustrate the positive (warmer) effect of snow cover on the ground temperature (GT) on the daily basis, the highest difference between GT and daily mean air temperature (DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the resnonse denth of ground to the alteration of snow depth is far more than 40 cm.
基金This study was supported by the National Natural Science Foundation of China under Grant[No.41330634]the STS Project of the Chinese Academy of Sciences under Grant[No.HHS-TSS-STS-1502].
文摘Permafrost is one of the largest elements of the terrestrial cryosphere and is extremely sensitive to climate change.Based on mean annual ground temperature(MAGT)data from 189 boreholes on the Qinghai–Tibet Plateau(QTP),terrain factors,and climate data from China Meteorological Forcing Dataset,we propose a new mean annual ground air temperature(MAGAT)statistical model between meteorological parameters with subsurface temperatures to simulate permafrost distribution and variation of MAGT on the QTP over the past three decades(1981–2010).Validation of the model with MAGT data from 13 boreholes and permafrost maps of the QTP indicated that the MAGAT model is applicable to simulate the distribution and evolution of permafrost on the QTP.Simulation results show that the spatiotemporal MAGT of permafrost significantly increased by 0.37℃,or 0.25℃/10 yr,and the total area of permafrost decreased by 2.48×10^(5)km^(2) on the QTP over the past three decades.Regionally,the changes of permafrost in the southwestern QTP were greater than other regions of the QTP.