期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Automatic Fast and Robust Technique to Refine Extracted SIFT Key Points for Remote Sensing Images 被引量:2
1
作者 Hayder Dibs Shattri Mansor +2 位作者 Noordin Ahmad Biswajeet Pradhan Nadhir A.Al-Ansari 《Journal of Civil Engineering and Architecture》 2020年第6期339-350,共12页
The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generat... The scale-invariant feature transform(SIFT)ability to automatic control points(CPs)extraction is very well known on remote sensing images,however,its result inaccurate and sometimes has incorrect matching from generating a small number of false CPs pairs,their matching has high false alarm.This paper presents a method containing a modification to improve the performance of the SIFT CPs matching by applying sum of absolute difference(SAD)in different manner for the new optical satellite generation called near-equatorial orbit satellite(NEqO)and multi-sensor images.The proposed method leads to improving CPs matching with a significantly higher rate of correct matches.The data in this study were obtained from the RazakSAT satellite covering the Kuala Lumpur-Pekan area.The proposed method consists of three parts:(1)applying the SIFT to extract CPs automatically,(2)refining CPs matching by SAD algorithm with empirical threshold,and(3)evaluating the refined CPs scenario by comparing the result of the original SIFT with that of the proposed method.The result indicates an accurate and precise performance of the model,which showed the effectiveness and robustness of the proposed approach. 展开更多
关键词 Automatic extraction of ground control point sum of absolute difference near-equatorial satellite multi-sensor modified SIFT
下载PDF
Hydrogeological Survey for Interpretation of Damaging Process in Ancient Grave of Naqsh-e-Rostam, Iran
2
作者 Azadeh Ghobadi Mobammadamin Emami Hesam Aslani 《Journal of Geological Resource and Engineering》 2014年第3期180-188,共9页
Naqsh-e-Rostam is known as an ancient periphery which is located in northwest of Persepolis in Fars Province, lran. The oldest relief at Naqsh-e-Rostam is severely damaged and dates to 1,200 B.C.. There is a rock reli... Naqsh-e-Rostam is known as an ancient periphery which is located in northwest of Persepolis in Fars Province, lran. The oldest relief at Naqsh-e-Rostam is severely damaged and dates to 1,200 B.C.. There is a rock relief thought to be elimate, originally. Four tombs belonging to Achaemenid kings are carved out of the rock face and seven oversized rock reliefs at Naqsh-e-Rostam depict the monarchs of the Sassanid Period. These works are located in orographic mountains which are exposed to the interaction with their surrounding environment. Therefore, existing deterioration as well as erosion process is mainly observed due to climatically conditions and geo-environmental factors which have caused such challenges. Transverse and micro cracks are most kinds of damages that will result in erosion in whole of these works. The focal sources which cause ground cracks have been studied with hydro geological survey. Actually considering the storage volume changing and the calculation of hydrological budget for aquifer, this conclusion drown that the ground crack in this site is the direct result of land subsidence resulting from ground water extraction. 展开更多
关键词 Rock reliefs SUBSIDENCE ground water extraction hydrological budget.
下载PDF
Density‑Based Road Segmentation Algorithm for Point Cloud Collected by Roadside LiDAR 被引量:1
3
作者 Yang He Lisheng Jin +3 位作者 Baicang Guo Zhen Huo Huanhuan Wang Qiukun Jin 《Automotive Innovation》 EI CSCD 2023年第1期116-130,共15页
This paper proposes a novel density-based real-time segmentation algorithm,to extract ground point cloud in real time from point cloud data collected by roadside LiDAR.The algorithm solves the problems such as the lar... This paper proposes a novel density-based real-time segmentation algorithm,to extract ground point cloud in real time from point cloud data collected by roadside LiDAR.The algorithm solves the problems such as the large amount of original point cloud data collected by LiDAR,which leads to heavy computational burden in ground point search.First,point cloud data is filtered by straight-through filtering method and rasterized to improve the real-time performance of the algorithm.Then,the density of the point cloud in horizontal plane is calculated,and the threshold of the density is selected to extract the low-density regional point cloud according to the density statistical histogram and 95%loci.Finally,the low-density regional point cloud is used as the initial ground seeds for iterative optimization of ground parameters,and the ground point cloud is extracted by the fitted ground model to realize road point cloud extraction.The experimental results on 1055 frames of continuous data collected on real scenes show that the average time consumption of the proposed method is 0.11 s,and the average segmentation precision is 92.48%.This shows that the density-based road segmentation algorithm can reduce the time of point cloud traversal in the process of ground parameter fitting and improve the real-time performance of the algorithm while maintaining the accuracy of ground extraction. 展开更多
关键词 Intelligent transportation system Point cloud segmentation ground extraction Point cloud density
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部