Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is...The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Merid...Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Meridian Circle to track the propagation and evolution of space weather events from the Sun to the Earth,as well as the imprints of other major natural and anthropic hazards on the ionosphere,the middle and upper atmosphere.Currently,we have completed the IMCP headquarters building in Beijing and established the China-Brazil Joint Laboratory for Space Weather in cooperation with Brazil.Meanwhile,the Chinese Meridian Project PhaseⅡand different components of the IMCP observation system are under construction.展开更多
The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Int...The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.展开更多
Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating(FBG) is probably the most popular one. With its unique capabil...Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating(FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive(profile) measurements, deployed under water(submersible), for localized high resolution and/or differential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.展开更多
A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa b...A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.展开更多
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金Project(2012BAJ06B04)supported by"12th Five-Year Plan"National science and Technology,ChinaProject(2014-228)supported by Department of Housing and Urban Rural Development of Hebei,China
文摘The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(183311KYSB20200003)。
文摘Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Meridian Circle to track the propagation and evolution of space weather events from the Sun to the Earth,as well as the imprints of other major natural and anthropic hazards on the ionosphere,the middle and upper atmosphere.Currently,we have completed the IMCP headquarters building in Beijing and established the China-Brazil Joint Laboratory for Space Weather in cooperation with Brazil.Meanwhile,the Chinese Meridian Project PhaseⅡand different components of the IMCP observation system are under construction.
文摘The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.
文摘Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating(FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive(profile) measurements, deployed under water(submersible), for localized high resolution and/or differential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.
基金Under the auspices of National Natural Science Foundation of China(No.31161140355)
文摘A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.