期刊文献+
共找到4,313篇文章
< 1 2 216 >
每页显示 20 50 100
Non-Split PML Boundary Condition for Finite Element Time-Domain Modeling of Ground Penetrating Radar 被引量:1
1
作者 Zhi Zhang Honghua Wang +2 位作者 Minling Wang Xi Guo Guihong Guo 《Journal of Applied Mathematics and Physics》 2019年第5期1077-1096,共20页
As a highly efficient absorbing boundary condition, Perfectly Matched Layer (PML) has been widely used in Finite Difference Time Domain (FDTD) simulation of Ground Penetrating Radar (GPR) based on the first order elec... As a highly efficient absorbing boundary condition, Perfectly Matched Layer (PML) has been widely used in Finite Difference Time Domain (FDTD) simulation of Ground Penetrating Radar (GPR) based on the first order electromagnetic wave equation. However, the PML boundary condition is difficult to apply in GPR Finite Element Time Domain (FETD) simulation based on the second order electromagnetic wave equation. This paper developed a non-split perfectly matched layer (NPML) boundary condition for GPR FETD simulation based on the second order electromagnetic wave equation. Taking two-dimensional TM wave equation as an example, the second order frequency domain equation of GPR was derived according to the definition of complex extending coordinate transformation. Then it transformed into time domain by means of auxiliary differential equation method, and its FETD equation is derived based on Galerkin method. On this basis, a GPR FETD forward program based on NPML boundary condition is developed. The merits of NPML boundary condition are certified by compared with wave field snapshots, signal and reflection errors of homogeneous medium model with split and non-split PML boundary conditions. The comparison demonstrated that the NPML algorithm can reduce memory occupation and improve calculation efficiency. Furthermore, numerical simulation of a complex model verifies the good absorption effects of the NPML boundary condition in complex structures. 展开更多
关键词 Non-Split Perfectly Matched Layer (NPML) ground penetrating radar (GPR) SECOND Order Wave Equation Finite Element Time Domain (FETD)
下载PDF
Ground Penetrating Radar Survey of Dam Structures of Kazakhstan on example of Aktobe and Karatomar Water Storage Basins
2
作者 Zhumabek Zhantayev Baurzhan Kurmanov +2 位作者 Nikolai Breusov Shigayev Dauren Kirsanov Alexandr 《Open Journal of Geology》 2013年第2期25-27,共3页
Ground penetrating radar surveys of technical condition of Karatomar and Aktobe water storage basins on the river Tobol are shown. In this article we have shown that dams have problems with cavities and identified lon... Ground penetrating radar surveys of technical condition of Karatomar and Aktobe water storage basins on the river Tobol are shown. In this article we have shown that dams have problems with cavities and identified longitudinal dimensions of anomalous zones of decompression. 展开更多
关键词 ground penetrating radar (GPR) Hydraulic Structures ANOMALOUS ZONES Dam DECOMPRESSION Zone Areas of High Humidity
下载PDF
Ground Penetrating Radar (GPR) Investigations for Architectural Heritage Preservation: The Case of Habib Sakakini Palace, Cairo, Egypt
3
作者 Sayed Hemeda 《Open Journal of Geology》 2012年第3期189-197,共9页
A comprehensive Ground Penetration Radar (GPR) investigations and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace in Cairo is presented herein, which is considered one of the mos... A comprehensive Ground Penetration Radar (GPR) investigations and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace in Cairo is presented herein, which is considered one of the most significant architectural heritage sites in Egypt. The palace located on an ancient water pond at the eastern side of Egyptian gulf besiding Sultan Bebris Al-Bondoqdary mosque is a place also called “Prince Qraja al-Turkumany pond”. That pond had been filled down by Habib Sakakini at 1892 to construct his famous palace in 1897. The integrated geophysical survey of the palace allowed the identification of several targets of potential archaeological and geotechnical engineering interest buried in fill and silty clay in the depth range between 100 - 700 cm. the methodological development focused on Multi-Fold (MF) Ground Penetrating Radar (GPR) imaging and subsurface characterization based on integrated velocity and attenuation analysis. Eight hundred sqm of Ground penetration Radar (GPR) profiling have been conducted to monitor the subsurface conditions. 600 meters are made in the surrounding area of the Palace and 200 sqm at the basement. The aim is to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna are used (500 - 100 MHZ) is used to penetrate the desired depth of 7 meters (ASTM D6432). The GPR is used also detect the water table. At the building basement the GPR is used to identify the foundation thickness and soil-basement interface. As well as the inspection of cracks in some supporting columns, piers and masonry walls. The GPR also was used to investigate the floors and ceilings conditions and structural mapping. The results were validated by the geotechnical and structural surveys. All these results together with the seismic hazard analysis will be used for the complete analysis of the palace in the framework of the rehabilitation and strengthening works foreseen in a second stage. 展开更多
关键词 ground Penetration radar (GPR) Architectural Heritage PRESERVATION Site INVESTIGATIONS GEOPHYSICS Restoration of MONUMENTS
下载PDF
Interpretation of Dune Genesis from Sedimentogical Data and Ground Penetrating Radar (GPR) Signatures: A Case Study from Ashirmata Dune Field, Mandvi Beach, Gujarat, India 被引量:4
4
作者 Deshraj Trivedi Koravangatt Devi +5 位作者 Ilya Buynevich P. Srinivasan K. Ravisankar Vipul Silwal D. Sengupta Rajesh R. Nair 《International Journal of Geosciences》 2012年第4期772-779,共8页
The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimen... The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimentological analy-sis reveals the NNW-SSE trending longitudinal dunes consists of well sorted fine sands with unimodal distribution pos-sibly formed by constant wind gust and also the point out to the origin of sediments from single source;mostly the sediments derived from Indus delta transported to beach by long shore drift and tidal waves, carried inland by local on-shore winds. The radargram confirms, the homogenous sand layers with paleosols at shallow depth slip faces are proba-bly formed due to extreme storm activity of Recent. 展开更多
关键词 Coastal DUNE Ashirmata Region Sedimentogical Analysis ground penetrating radar PALEOSOL
下载PDF
Research on Signal Processing Arithmetic of Subsurface Ground Penetrating Radar 被引量:1
5
作者 KONGLing-jiang 《Journal of Electronic Science and Technology of China》 2005年第2期189-190,共2页
关键词 ground penetrating radar synthetic aperture imaging clutter reduction stepped-frequency continuous wave ground penetrating radar HYPERBOLA azimuth resolution synthetic aperture radar
下载PDF
Correlation of Ground Penetrating Radar Data with Geotechnical Prospect Profiles: Reduto Case Study, Belém-PA, Brazil
6
作者 Danusa Mayara de Souza Lyvio Luiz Clávio de Alcântara Júnior 《Advances in Geological and Geotechnical Engineering Research》 2023年第2期50-63,共14页
The study presented in this manuscript aimed to relate the sedimentary strata imaged by the ground penetrating radar(GPR)method through numerical modeling with the mapping of sedimentary strata acquired through geotec... The study presented in this manuscript aimed to relate the sedimentary strata imaged by the ground penetrating radar(GPR)method through numerical modeling with the mapping of sedimentary strata acquired through geotechnical surveys.The study aimed to expose how obtaining subsoil information through noninvasive/destructive electromagnetic waves is beneficial,as they are reliable and less costly than drilling holes beyond what is necessary to have a subsurface mapping.In this sense,physical-geological modeling was carried out.The information on the type of sediments,acquired through simple recognition surveys carried out in the city of Belém-PA,helped to create a model of a sedimentary package with its respective intrinsic physical properties.The result shows that the GPR recovered with good vertical and horizontal resolution at the beginning and end of the layers of the sedimentary package studied,proving to be very effective for locating geotechnical sounding points and safely reducing costs. 展开更多
关键词 Geotechnical prospecting ground penetrating radar Numerical modeling
下载PDF
Assessing the Preservation State and Revealing Plastered Mosaics in Hagia Sophia Using Ground Penetrating Radar
7
作者 Antonia Moropoulou Kyriakos C Labropoulos and Nikolaos S Katsiotis 《材料科学与工程(中英文A版)》 2012年第2期183-189,共7页
关键词
下载PDF
The Impact of Frequency in Surveying Engineering Slopes Using Ground Penetrating Radar 被引量:1
8
作者 Angelo Indelicato 《International Journal of Geosciences》 2017年第3期296-304,共9页
Ground Penetrating Radar (GPR) is one of the non-invasive techniques commonly used to identify “anomalies” in the ground. It has been proven very effective in different fields ranging from the location of pipes and ... Ground Penetrating Radar (GPR) is one of the non-invasive techniques commonly used to identify “anomalies” in the ground. It has been proven very effective in different fields ranging from the location of pipes and other underground services to the identification of archaeological sites. After the 1994 Kwun Lung Lau accident in Hong Kong, the Government has been commissioning the feasibility of different geophysics techniques to identify any issues related to engineering slopes and retaining walls. Among the different techniques tested during phase I, Electrical Imaging (EI) and Ground Penetrating Radar (GPR) were the most applicable in the study of old masonry walls. This paper aims to stress the importance of using the appropriate frequencies during the GPR survey of engineering slopes. In order to do that, two independent contractors who used different frequencies to carry out the GPR survey on the same area will be compared. 展开更多
关键词 ground penetrating radar SLOPE SURVEY Hong Kong
下载PDF
Mode decomposition methods and their application in ground penetrating radar data processing 被引量:1
9
作者 ZHOU Weifan ZENG Zhaofa LI Jing 《Global Geology》 2019年第3期199-208,共10页
Ground Penetrating Radar(GPR) method is a widely used method in engineering geophysical exploration at home and abroad. Compared with other geological exploration methods, the GPR method has the advantages of faster d... Ground Penetrating Radar(GPR) method is a widely used method in engineering geophysical exploration at home and abroad. Compared with other geological exploration methods, the GPR method has the advantages of faster detection, higher resolution, convenient operation and relatively low detection cost. With the wide application and continuous development of GPR methods, the processing and interpretation of GPR data is increasingly important. The authors introduce the development process and current situation of the modal decomposition method in processing GPR data, summarize the principles of four modal decomposition methods, and compare their advantages and disadvantages in ground penetrating radar data processing. The results show that when the quality of GPR data is good and the noise is small, Empirical Mode Decomposition(EMD) and Ensemble Empirical Mode Decomposition(EEMD) methods can be used for processing, whereas when the noise interference is large or the underground medium is complex, Complete Ensemble Empirical Mode Decomposition(CEEMD) and Variational Mode Decomposition(VMD) methods can be used for processing. The four modal decomposition methods have their own advantages and disadvantages in GPR data processing. At present, the processing of GPR data by CEEMD and VMD methods is the focus of research and discussion at home and abroad. 展开更多
关键词 ground penetrating radar MODE DECOMPOSITION IMF mode-mixing
下载PDF
Ground Penetrating Radar(GPR) Applications in Hydrogeological Study of Aquifers
10
作者 Sunjay Vikas Kr Srivastava Vinod Kumar Singh 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期28-28,共1页
Ground penetrating radar is a noninvasive electromagnetic geophysical technique for subsurface exploration,characterization and monitoring.Ground penetrating radar is sometimes called georadar, ground probing radar,or... Ground penetrating radar is a noninvasive electromagnetic geophysical technique for subsurface exploration,characterization and monitoring.Ground penetrating radar is sometimes called georadar, ground probing radar,or subsurface radar,earth sounding radar / radar terrestre penetrant,Well Probing Radar,and Borehole Radar.The principles involved are similar to reflection seismology,except that electromagnetic energy is used instead of 展开更多
关键词 ground penetrating radar UHF/VHF frequencies groundWATER CONTAMINANTS
下载PDF
Feature Extraction and Classification of Echo Signal of Ground Penetrating Radar 被引量:5
11
作者 ZHOU Hui-lin TIAN Mao CHEN Xiao-li 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期1009-1012,共4页
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ... Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented. 展开更多
关键词 ground penetrating radar nonstationary signal dyadic wavelet transform feed-forward multi-layer perceptron back propagation algorithm
下载PDF
Root imaging from ground penetrating radar data by CPSO-OMP compressed sensing 被引量:4
12
作者 Chao Li Yaowen Su +1 位作者 Yizhuo Zhang Huimin Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期155-162,共8页
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor... As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction. 展开更多
关键词 Chaotic particle swarm Compression sensing ground penetrating radar Orthogonal matching pursuit OMP Root imaging
下载PDF
Measurement of a thin layer's thickness using independent component analysis of ground penetrating radar data
13
作者 李想堂 张肖宁 王端宜 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期445-449,共5页
To detect overlapped echoes due to the thin pavement layers,we present a thickness measurement approach for the very thin layer of pavement structures.The term "thin" is relative to the incident wavelength o... To detect overlapped echoes due to the thin pavement layers,we present a thickness measurement approach for the very thin layer of pavement structures.The term "thin" is relative to the incident wavelength or pulse.By means of independent component analysis of noisy signals received by a single radar sensor,the overlapped echoes can be successfully separated.Once the echoes from the top and bottom side of a thin layer have been separated,the time delay and the layer thickness determination follow immediately.Results of the simulation and real data verify the feasibility of the presented method. 展开更多
关键词 thin layer thickness measurement independent component analysis ground penetrating radar PAVEMENT
下载PDF
Detection of the Possible Buried Archeological Targets Using the Geophysical Methods of Ground Penetrating Radar (GPR) and Self Potential (SP), Kom Ombo Temple, Aswan Governorate, Egypt
14
作者 Salem B. A. Yousef Mohamed H. M. Yousef +1 位作者 Hussein F. Abd-Elsalam Mohamed A. M. Shaheen 《Geomaterials》 2020年第4期105-117,共13页
Kom Ombo temple is one of temples which were belted over high plateau close to the River Nile, near to Aswan in Egypt in the Greek-Roman period. The expected archaeological remains in the selected area are the hidden ... Kom Ombo temple is one of temples which were belted over high plateau close to the River Nile, near to Aswan in Egypt in the Greek-Roman period. The expected archaeological remains in the selected area are the hidden tunnels of the mummified crocodiles. The aim of the present work is to detect any of these tunnels by the application of the (GPR) and (SP) methods. The interpretation of the 10 GPR profiles revealed some locations of possible hidden tunnels. These locations show different contrasts and high amplitudes of the reflected signals, compared to the enclosing soil;also the scattering of the signals is higher than the bed layer in these locations, which may reveal the possible buried mummified crocodile tunnels in the study area. The depths of the possible targets range from 2.0 m to 2.5 m. The SP electric map shows that the study area possesses a range of about 135 mV of the potential differences between the measured stations. The positive response of the SP data is mainly concentrated at the central part of the study area. The relatively weak, negative SP anomalies may be related to moisture in the soil. The positive SP anomalies on the SP electric map display possible significant correlation between them and the inferred tunnel locations from the GPR data. The calculated depths from the SP profiles show significant agreement with that estimated from GPR data depths, which indicate that the SP electric method can be used as a successful tool in detecting buried archaeological remains in support of GPR. 展开更多
关键词 ground penetrating radar SELF-POTENTIAL Kom Ombo Temple Aswan EGYPT
下载PDF
Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model 被引量:5
15
作者 戴前伟 冯德山 何继善 《Journal of Central South University of Technology》 EI 2005年第4期478-482,共5页
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c... The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model. 展开更多
关键词 ground penetrating radar finite difference time domain method forward simulation ideal frequency dispersion relationship
下载PDF
Wigner Frequency Point Slice Analysis of Superposition Data for Phased-Array Ground Penetrating Radar 被引量:2
16
作者 ZOULian CHENShu-zhen +2 位作者 YANGShen WEIDan XIAOBo-xun 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第6期904-908,共5页
According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis f... According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing. 展开更多
关键词 phased-array ground penetrating radar wigner time-frequency analysis superposition data object identification
下载PDF
Regional characteristics of sea ice thickness in Canadian shelf and Arctic Archipelago measured by Ground Penetrating Radar 被引量:1
17
作者 LI Tao ZHAO Jinping +2 位作者 JIAO Yutian HOU Jiaqiang MU Longjiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期110-116,共7页
Ground Penetrating Radar (GPR) measurements of sea ice thickness including undeformed ice and ridged ice were carried out in the central north Canadian Archipelago in spring 2010. Results have shown a significant sp... Ground Penetrating Radar (GPR) measurements of sea ice thickness including undeformed ice and ridged ice were carried out in the central north Canadian Archipelago in spring 2010. Results have shown a significant spatial heterogeneity of sea ice thickness across the shelf. The undeformed multi-year fast ice of (2.05±0.09) m thick was investigated southern inshore zone of Borden island located at middle of the observational section, which was the observed maximum thickness in the field work. The less thick sea ice was sampled across a flaw lead with the thicknesses of (1.05±0.11) m for the pack ice and (1.24±0.13) m for the fast ice. At the northernmost spot of the section, the undeformed multi-year pack ice was (1.54±0.22) m thick with a ridged ice of 2.5 to 3 m, comparing to the multi-year fast ice with the thickness of (1.67±0.16) m at the southernmost station in the Prince Gustaf Adolf Sea. 展开更多
关键词 ARCTIC sea ice thickness Canadian Archipelago ground penetrating radar
下载PDF
Research on Data Combination for Phased-Array Ground Penetrating Radar 被引量:1
18
作者 ZouLian ChenShu-zhen +1 位作者 ShiJing XiaoBo-xun 《Wuhan University Journal of Natural Sciences》 CAS 2003年第04A期1111-1115,共5页
To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method ca... To resolve the data combination of Phased-array Ground Penetrating Radar (PAGPR), we first build a model of PAGPR and a layered model, and then a new data combination algorithm is presented based on it. This method calculates time delay of multi-receivers, basing on the signal of the nearest receiver, then shifts other signals and adds them up, and gets one signal at last. It has been proved that this method can restrain noise, multiple waves, clutter waves and improve the precision of time location. In the end, an example is given to prove the method's efficiency. 展开更多
关键词 data combination phased-array radar ground penetrating radar signal processing
下载PDF
Condition Assessment of August A. Busch Bridge Deck Using Portable Seismic Property Analyzer and Ground Penetrating Radar 被引量:1
19
作者 Samie Hamad Wajdi Ammar +1 位作者 Salah Shaniba Abdelmajeed Altlomate 《Open Journal of Civil Engineering》 2022年第1期14-21,共8页
Ground penetrating radar (GPR) and the portable seismic property analyzer (PSPA) have been extensively used in the past two decades for monitoring, quantifying, and mapping the deterioration of bridge decks. Using PSP... Ground penetrating radar (GPR) and the portable seismic property analyzer (PSPA) have been extensively used in the past two decades for monitoring, quantifying, and mapping the deterioration of bridge decks. Using PSPA and GPR ensures regular monitoring of bridge conditions, leads to the early detection of deterioration. This research is to address the condition of August A. Busch bridge deck owned by the Missouri Department of Conservation. Visual inspection, GPR, and PSPA data were acquired on the bridge deck. Over 90% of the bridge deck was in fair to good condition with an average compressive strength of over 2500 psi. GPR data showed no indication of significant deterioration. The overall bridge deck was determined to be in fair to good condition. 展开更多
关键词 ground penetrating radar Portable Seismic Property Analyzer Bridge Deck Concrete Deterioration
下载PDF
3D prestack reverse time migration of ground penetrating radar data based on the normalized correlation imaging condition
20
作者 Wang Hong-Hua Gong Jun-bo +4 位作者 Zhang Zhi Xiong Bin Lv Yu-zeng Feng De-shan Dai Qian-wei 《Applied Geophysics》 SCIE CSCD 2020年第5期709-718,901,共11页
The reverse time migration(RTM)of ground penetrating radar(GPR)is usually implemented in its two-dimensional(2D)form,due to huge computational cost.However,2D RTM algorithm is difficult to focus the scattering signal ... The reverse time migration(RTM)of ground penetrating radar(GPR)is usually implemented in its two-dimensional(2D)form,due to huge computational cost.However,2D RTM algorithm is difficult to focus the scattering signal and produce a high precision subsurface image when the object is buried in a complicated subsurface environment.To better handle the multi-off set GPR data,we propose a three-dimensional(3D)prestack RTM algorithm.The high-order fi nite diff erence time domian(FDTD)method,with the accuracy of eighth-order in space and second-order in time,is applied to simulate the forward and backward extrapolation electromagnetic fi elds.In addition,we use the normalized correlation imaging condition to obtain pre-stack RTM result and the Laplace fi lter to suppress the low frequency noise generated during the correlation process.The numerical test of 3D simulated GPR data demonstrated that 3D RTM image shows excellent coincidence with the true model.Compared with 2D RTM image,the 3D RTM image can more clearly and accurately refl ect the 3D spatial distribution of the target,and the resolution of the imaging results is far better.Furthermore,the application of observed GPR data further validates the eff ectiveness of the proposed 3D GPR RTM algorithm,and its fi nal image can more reliably guide the subsequent interpretation. 展开更多
关键词 ground penetrating radar(GPR) 3D Reverse Time Migration(RTM) Finite Diff erence Time Domain(FDTD) Normalized correlation imaging condition
下载PDF
上一页 1 2 216 下一页 到第
使用帮助 返回顶部