Groundnuts marketed from farms are generally referred to as groundnuts in-shell. When freshly harvested, they may contain some dirt, vines and other foreign materials. Grades of these stocks are established based on i...Groundnuts marketed from farms are generally referred to as groundnuts in-shell. When freshly harvested, they may contain some dirt, vines and other foreign materials. Grades of these stocks are established based on intended use. Groundnut producers and commercial buyers use the grade as guidelines for trading. Grading aims at raising the quality and value of the product. Grading is generally limited to measurement of physical properties, such as, size distributions of the pods and percentage by weight of shelled kernels in the undecorticated groundnuts and percentage by weight of foreign materials. A groundnut grader was designed and developed. It was designed to sort three selected groundnut varieties commonly cultivated in Nigeria into three grades based on the geometric dimensions of the selected varieties. These varieties are SAMNUT 10, 14 and 18.Analyses of grading trials indicate that while SAMNUT 10 exhibits the three grades, the other varieties (SAMNUT 14 and 18) can only be graded into two grades. The grader has a rated capacity of grading 224 th-1 of undercorticated pods. The maximum ranges within each grade when all the varieties were considered were: grade I—15.81 mm to 18.05 mm, grade II—12.44 mm to 15.78 mm and grade III—10.60 mm to 13.30 mm.展开更多
In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to syntheti...In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to synthetic fungicides, which pose potential health risks to consumers. In this study, the antifungal activity of the essential oils (EOs) of Lippia multiflora, Eucalyptus camaldulensis and Ocimum americanum was evaluated against two strains of Aspergillus flavus via the agar dilution method. These two Aspergillus flavus fungi was isolated from Bamabra groundnut seeds. Lippia multiflora essential oil (EO) showed the best results compared with the other oils, with a minimum inhibitory concentration (MIC) of 9000 μg∙mL−1. The MIC for Eucalyptus camaldulensis and Ocimum americanum EOs was 10,800 μg∙mL−1. In view of their antifungal properties, these EOs could be used to develop a new, safe antifungal agent for food preservation.展开更多
A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Bl...A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Block Design (RCBD) with three (3) replications. The factor A included three (3) groundnut varieties (Nkatie Sari, Sum Nutt 22 and Yenyawoso) and Factor B was the three (3) spacing of 30 cm × 15 cm, 30 cm × 30 cm and 30 cm × 40 cm. All recommended agronomic practices were followed. Data was collected from eight (8) tagged plants. Growth data were recorded on plant height, number of branches, number of leaves, and the number of flowers while yield data were collected on the number of flowers, number of pods per plant, 100 seeds weight and the pod yield (kg/ha). The plant spacing significantly influenced (P < 0.05) the growth and yield parameters. Groundnut grown at a spacing of 30 cm × 15 cm produced the maximum plant height, whereas the maximum number of leaves, number of branches and number of flowers were produced from 30 cm × 40 cm. Yenyawoso variety with a wider plant spacing performed better vegetatively among all the varieties. The Yenyawoso variety produced the highest number of pods, 100 seeds weight and pod yield as compared to the other varieties. Also, Yenyawoso at 30 cm × 40 cm spacing and Nkatie Sari at 30 cm × 15 cm spacing produced the maximum pod yield.展开更多
Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to en...Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.展开更多
The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,t...The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement.展开更多
It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are ...It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleaning the nuts. Grain and nuts absorb low levels of NIR, and when NIR radiation is incident on them, a substantial portion of the radiation is reflected back. Thus, studying the NIR reflectance spectra emanating from in-shell peanuts, an attempt is made for the first time to determine the MC of in-shell peanuts. In-shell peanuts of two different market types, Virginia and Valencia, were conditioned to different moisture levels between 6% and 26% (wet basis), and separated into calibration and validation groups. NIR absorption spectral data from 1000 nm to 2500 nm in 1 nm intervals were collected from both groups. Measurements were obtained on 30 replicates within each moisture level. Reference MC values for each moisture level in these groups were obtained using standard air-oven method. Partial Least Square (PLS) analysis was performed on the calibration data, and prediction models were developed. The Standard Error of Calibration (SEC), and R2 of the calibration models were computed to select the best calibration model. The selected models were used to predict the moisture content of peanuts in the validation sets. Predicted MC values of the validation samples were compared with their standard air-oven moisture values. Goodness of fit was determined based on the lowest Standard Error of Prediction (SEP) and highest R2 value obtained for the prediction models. The model, with reflectance plus normalization spectral data with an SEP of 0.74 for Valencia and 1.57 for Virginia type in-shell peanuts was selected as the best model. The corresponding R2 values were 0.98 for both peanut types. This work establishes the possibility of sensing MC of intact in-shell peanuts by NIR reflectance method, and would be useful for the peanut and allied industries.展开更多
In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a ...In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a whole have not received much attention. There is a dearth of knowledge on the productivity of maize-groundnut intercrops in Ghana regarding the relative timing of planting and spatial arrangement of component crops. Therefore, the objective of the study was to determine the effects of spatial row arrangement and the time of planting intercrops on the productivity of groundnut under maize-groundnut intercropping. The 5 × 3 factorial field experiment was undertaken at the Miminaso community in the Ejura-Sekyedumase municipality of the Ashanti Region of Ghana during the 2020 cropping seasons. Treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replicates. The levels of row arrangement of intercrops were: one row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize and sole groundnut (M/G). The levels of time of introducing groundnut included simultaneous planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP). There were significant (P 0.05) treatment interactions for pod and seed yields of groundnut throughout the study. The highest groundnut pod yields of 1815.00 kg/ha and 2359.00 kg/ha were recorded by the 0WAP × 1M2G treatment in the major and minor seasons of 2020, respectively, while the highest groundnut seed yields of 741.00 kg/ha and 726.00 kg/ha were recorded in the major and minor rainy seasons of 2020 by 1WAP × G and 0WAP × G treatments, respectively. The highest seed yields of groundnut (404 kg/ha and 637 kg/ha for major and minor rainy seasons, respectively) were produced by 1WAP × 2M2G.展开更多
Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hul...Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hull (R-GH)]. The biosorbents were further characterized using physicochemical procedures (pH dependence, bulk density, surface area, ash content, and volatile matter, moisture content). The results show that HP-GH has pH = 8.9, W-GH pH = 8.4 and R-GH pH = 8.5 which is an indication that all the biosorbents have the appropriate pH values for the uptake of cationic species within aqueous systems. Surface area analysis revealed that HP-GH has the largest surface area (74.20 m<sup>2</sup>·g<sup>-1</sup>) while W-GH and R-GH have surface area values of 29.40 m<sup>2</sup>·g<sup>-1</sup> and 21.40 m<sup>2</sup>·g<sup>-1</sup> respectively. This suggests that modification of raw groundnut hull biomass with hydrogen peroxide possibly instigated delignification of the biomass which resulted in increased surface area for HP-GH. Results from Bulk density analysis also confirm the data obtained from surface area analysis. Accordingly, R-GH displayed the highest bulk density followed by W-GH with HP-GH showing the least bulk density. The variation in pH values among the biomass used in this study may be explained by the variation in their ash content as well because pH and ash content are positively correlated. Hence, HP-GH with a pH = 8.9 has high ash content (117.31%), W-GH with pH = 8.4 has 97.93% ash content and R-GH with pH = 8.5 has 94.26% ash content. Results from moisture content analysis show that HP-GH (99.95%), W-GH (99.97%) and R-GH (99.89%) may necessitate exposure of the biosorbents to moderate heat before use. The results obtained from this study suggest that modification of ground nut hull with either distilled water or Hydrogen peroxide by means of microwave irradiation improves physicochemical properties which may perhaps increase the adsorption capacity of the biomass.展开更多
Soil fertility continues to decline in Ghana due to unsustainable human activities like bush burning, quarrying, improper farming practices, among others. To resolve this challenge, crop farmers resort to continuous u...Soil fertility continues to decline in Ghana due to unsustainable human activities like bush burning, quarrying, improper farming practices, among others. To resolve this challenge, crop farmers resort to continuous use of mineral fertilizers in Ghana, which contaminates the environment and makes crop farming less sustainable and productive. One of the strategies to improve soil fertility and productivity for sustainable crop yields is intercropping. Studies were, therefore, undertaken at Miminaso in the Ejura-Sekyedumase municipality of Ashanti Region of Ghana during the 2020 cropping seasons to determine the effects of spatial row arrangement and time of planting maize and groundnut intercrops on productivity of maize and land equivalent ratio (LER). One row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize (M) and sole groundnut (G) were factorially arranged with concurrent planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP) in a Randomized Complete Block Design with three replicates. There were significant treatment interaction (P < 0.05) effects for shelling percentage for maize in both seasons of the trial. In the major season of 2020, the highest shelling percentage of 79.30% was associated with 0 WAP × M, while in the minor season of 2020, the highest shelling percentage of 75.02% was recorded by 0 WAP × 2M1G. The treatment interaction effects for maize grain yield were significant only in the minor season of 2020 with the highest maize grain yield of 6341 kg/ha being produced by the sole maize treatment, followed by 1 WAP × 2M2G (6152 kg/ha). The highest LER of 3.05 was associated with 1 WAP × 2M2G in the minor season of 2020. Planting groundnuts within the first week of planting maize (1 WAP) increased maize seed yield and LER in two rows of maize and two rows of groundnut (2M2G) row arrangements.展开更多
The Bambara groundnut Vigna subterranea (L.) Verdc. is a drought-resistant indigenous African grain legume with significant nutritional and agronomic potential. This study aimed to characterize the seed storage protei...The Bambara groundnut Vigna subterranea (L.) Verdc. is a drought-resistant indigenous African grain legume with significant nutritional and agronomic potential. This study aimed to characterize the seed storage proteins of eight Bambara groundnut landraces. Seeds of Bambara groundnut landraces were collected from local markets in Burkina Faso, and total soluble protein as well as protein fractions were extracted. Crude protein content was determined by the Kjeldahl method, and soluble proteins were quantified using Bradford dye binding assay. The average crude protein content of the seeds was found to be 18.46%, with variations ranging from 17.69% to 19.17% among the different landraces. Most of the protein content was soluble, constituting approximately 87.04% of the total crude protein. Albumin fraction was the most dominant, representing about 95.42% of the total soluble proteins. The globulin, prolamin and glutelin fractions accounted for 1.82%, 0.13% and 1.17% of the soluble proteins, respectively. The findings provide valuable insights into the protein composition of Bambara groundnut landraces and contribute to our understanding of its nutritional potential, laying the groundwork for further research on crop improvement and sustainable agriculture practices.展开更多
Different genotypes of Bambara groundnut (Vigna subterranea L. Verdc) grow well under conducive environmental conditions, provided that adequate soil moisture is available during vegetative and reproductive phases. Ho...Different genotypes of Bambara groundnut (Vigna subterranea L. Verdc) grow well under conducive environmental conditions, provided that adequate soil moisture is available during vegetative and reproductive phases. However, drought stress is the major limiting factor to bambara production, which accounts for up to 40% of yield losses. This situation could worsen due to drastic and rapid changes in the global climate. Landraces grown by farmers are low-yielding. Understanding the physiological response of different genotypes to drought stress is key to achieving food security through crop improvement and diversification. This study focused on variations in the response of Bambara groundnut genotypes to intermittent drought stress during the crop’s critical growth (vegetative and reproductive) stages. The experiment was undertaken at CSIR-Crops Research Institute Screen-house. The treatments were used in a factorial experiment with three replications in a randomized complete block design. The Bambara genotypes showed considerable variability in tolerance to drought stress. Drought stress during vegetative and reproductive stages significantly reduced crop growth indices, the leaf relative water content, chlorophyll content and leaf area. Drought stress during vegetative and reproductive stages had a more severe impact on the seed yield of genotype Nav Red, reducing it by 69% and 13%, respectively. Farmers should pay more attention to adopting drought-tolerant and high-yielding varieties for improved Bambara groundnut productivity and livelihoods.展开更多
Prediction of the nutrient deficiency range and control of it through application of an appropriate amount of fertiliser at all growth stages is critical to achieving a qualitative and quantitative yield.Distributing f...Prediction of the nutrient deficiency range and control of it through application of an appropriate amount of fertiliser at all growth stages is critical to achieving a qualitative and quantitative yield.Distributing fertiliser in optimum amounts will protect the environment’s condition and human health risks.Early identification also prevents the disease’s occurrence in groundnut crops.A convo-lutional neural network is a computer vision algorithm that can be replaced in the place of human experts and laboratory methods to predict groundnut crop nitro-gen nutrient deficiency through image features.Since chlorophyll and nitrogen are proportionate to one another,the Smart Nutrient Deficiency Prediction System(SNDP)is proposed to detect and categorise the chlorophyll concentration range via which nitrogen concentration can be known.The model’sfirst part is to per-form preprocessing using Groundnut Leaf Image Preprocessing(GLIP).Then,in the second part,feature extraction using a convolution process with Non-negative ReLU(CNNR)is done,and then,in the third part,the extracted features areflat-tened and given to the dense layer(DL)layer.Next,the Maximum Margin clas-sifier(MMC)is deployed and takes the input from DL for the classification process tofind CCR.The dataset used in this work has no visible symptoms of a deficiency with three categories:low level(LL),beginning stage of low level(BSLL),and appropriate level(AL).This model could help to predict nitrogen deficiency before perceivable symptoms.The performance of the implemented model is analysed and compared with ImageNet pre-trained models.The result shows that the CNNR-MMC model obtained the highest training and validation accuracy of 99%and 95%,respectively,compared to existing pre-trained models.展开更多
Agroecosystems in the Senegalese groundnut basin experience long periods of high temperatures and drought, which disrupt the stability of soil microbial communities. This study evaluated how that stability is affected...Agroecosystems in the Senegalese groundnut basin experience long periods of high temperatures and drought, which disrupt the stability of soil microbial communities. This study evaluated how that stability is affected by homefields and outfields’ agricultural practices and the duration of heat stress. Specifically, we collected soils from organically farmed fields that receive continual high inputs of manure (homefields), and from fields that are rarely manured (outfields). Soil samples were submitted to artificial heat stress at 60°C for 3, 14, and 28 days, followed by 28 days of recovery at 28°C. We examined the functional stability of microbial communities by quantifying C mineralization, and characterized the stability of the communities’ taxonomic compositions via high-throughput DNA sequencing. We found that the microbial communities have a low resistance to heat stress in soils from both types of fields. However, the manuring practice does affect how the functional stability of microbial communities responds to different durations of heat stress. Although functional stability was not recovered fully in either soil, microbial community resilience seemed to be greater in homefield soils. Differences in manuring practices also affected the structural taxonomic stability of microbial communities: relative abundances of Bacilli, Chloroflexia, Actinobacteria and Sordariomycetes increased in the homefield stressed-soils, but decreased significantly in outfield soils. In contrast, relative abundances of α-Proteobacteria, γ-Proteobacteria and Eurotiomycetes increased significantly in outfield stressed-soils, while decreasing significantly in the homefield soils. Relative abundances of Bacilli changed little in outfield soils, indicating that this taxon is resistant to heat stress. In summary, the microbial communities’ capacities to resist heat stress and recover from it depend upon the organic richness of the soil (i.e., manuring practice) and the adaptation of soil microbes to environmental conditions.展开更多
Cassava-groundnut intercropping is not a common practice among smallholder farmers in Sierra Leone even though both crops are well suited for intercropping. On-farm trials were conducted in three locations (Bai Largor...Cassava-groundnut intercropping is not a common practice among smallholder farmers in Sierra Leone even though both crops are well suited for intercropping. On-farm trials were conducted in three locations (Bai Largor, Bassah, and Njala Kanima) in the Moyamba district during the 2021 cropping season to investigate the efficacy of cassava-groundnut intercropping for increasing crop productivity and soil organic carbon stock on smallholder farms in the Moyamba district, Southern Sierra Leone. The experimental design was a randomized complete block design in three replications with treatments of sole groundnut, sole cassava and cassava-groundnut intercropping. Data on the yield and yield components of cassava and groundnut were analysed using the PROC MIXED procedure of SAS 9.4 and means were compared using the standard error of difference (SED). The above-ground biomass, number of roots per plant, and fresh root yield of cassava were not significantly (p > 0.05) affected by the cassava-based cropping system. Averaged across locations, intercropping cassava with groundnut decreased the above-ground biomass, the number of roots per plant, and fresh root yield of cassava by 17%, 11%, and 17%, respectively. The above-ground biomass, number of pods per plant and fresh pod yield of groundnut were significantly (p 1), the highest net revenue and benefit-cost ratio. The benefit-cost ratio was also favourable for the sole cassava (BCR > 1) but not favourable for the sole groundnut (BCR < 1). Averaged across locations, intercropping cassava with groundnut increased the benefit-cost ratio by 121% and 13% when compared to the sole groundnut and sole cassava. In the event of a 40% yield loss for the cassava and groundnut, the benefit-cost ratio was favourable (1.12) only for the cassava groundnut intercropping system. The net soil organic carbon stock was favourable only for the cassava-groundnut intercrop. Averaged across locations, the net soil organic carbon for the cassava-groundnut intercropping increased by 3.4% when compared to the baseline within one cropping cycle of the cassava (12 months). The results confirm that cassava-groundnut intercropping is a sustainable land management practice that could enhance crop productivity and soil organic carbon stock on smallholder farms.展开更多
Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess ge...Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess germplasm variability from whole seed of 699 samples,field-collected and assembled in four genetic and environmentbased sets:one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population,evaluated in three environments in a large spatial scale of two countries,Mbalmayo and Bafia in Cameroon and Nioro in Senegal,under rainfed conditions.NIR elemental spectra were gathered on six subsets of seeds of each sample,after three rotation scans,with a spectral resolution of 16 cm-1over the spectral range of867 nm to 2530 nm.Spectra were then processed by principal component analysis(PCA)coupled with Partial least squares-discriminant analysis(PLS-DA).As results,a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments.The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 nm,usually related to oil content and fatty acid composition.PCA yielded the most chemical attributes in three significant PCs(i.e.,eigenvalues>10),which together captured 93%of the total variation,revealing genetic and environment structure of varieties and genotypes into four clusters,corresponding to the four samples sets.The pattern of genetic variability of the interspecific population covers,remarkably half of spectrum of the core-collection,turning out to be the largest.Interestingly,a PLS-DA model was developed and a strong accuracy of 99.6%was achieved for the four sets,aiming to classify each seed sample according to environment origin.The confusion matrix achieved for the two sets of Bafia and Nioro showed 100%of instances classified correctly with 100%at both sensitivity and specificity,confirming that their seed quality was different from each other and all other samples.Overall,NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection,as a source of nutritional diversity,to support the breeding efforts.展开更多
During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield,...During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.展开更多
Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breedin...Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breeding programs has been restricted by reproductive barriers between wild and cultivated species and technical difficulties in making large numbers of crosses.Efforts to overcome these hurdles have resulted in the development of synthetic amphidiploids,namely ISATGR 278-18(Arachis duranesis×Arachis batizocoi)and ISATGR 5B(Arachis magna×A.batizocoi),which possess several desirable traits,including resistance to foliar diseases that generally cause huge yield losses annually in groundnut growing areas of Asia,America,and Africa.With an objective to improve foliar disease resistance,the primary gene pool was diversified by introgressing foliar disease resistance in five cultivated genotypes(ICGV 91114,ICGS 76,ICGV 91278,JL 24,and DH 86)from synthetic amphidiploids using a backcross breeding approach.Several introgression lines with resistance to two foliar diseases(rust and late leaf spot)were identified with levels of resistance equal to the donors.These backcross derived lines have shown a wide range of variation for several morphological and agronomic traits.These lines,after further evaluation and selection,can serve as donors in future breeding programs aimed atdeveloping improved cultivars with desirable agronomic traits,high resilience to biotic/abiotic stresses and a broadened genetic base.展开更多
Objective:To assess the awareness and knowledge of aflatoxin contamination in groundnut and the risk of its ingestion among health workers in Ibadan.Methods:The study was a descriptive cross-sectional study.Study inst...Objective:To assess the awareness and knowledge of aflatoxin contamination in groundnut and the risk of its ingestion among health workers in Ibadan.Methods:The study was a descriptive cross-sectional study.Study instrument was a semi-structured self administered questionnaire. The respondents were health workers from a public health facility.Results:A total of 417 health workers participated out of which males were 60.2%.The mean age of respondents was(28.0±4.9) years old.Doctors made up 83.0%while others were nurses.95%of the respondents had previous awareness of aflatoxin and class room lectures was the most common source of information(56%).Occupation and religion both showed a significant association with previous awareness of aflatoxin(P<0.05).Knowledge regarding aflatoxin contamination in groundnut and the risk of its ingestion was obtained showing knowledge score range of 0 to 14.In all,80.6%had good scores of 11 to 14.None of the respondents had ever told their patients about the risk of aflatoxin ingestion. Conclusions:There is a need to explore the possibility of incorporating aflatoxin awareness into routine health talk to increase the level of awareness of patients and their relatives.展开更多
Induced mutation in plant improvement has been used in several crops to generate new sources of genetic variations. A study was conducted to determine the effect of different doses of gamma irradiation on different mo...Induced mutation in plant improvement has been used in several crops to generate new sources of genetic variations. A study was conducted to determine the effect of different doses of gamma irradiation on different morpho-agronomic characteristics. Agronomic traits that were analyzed included: grain yield, number of pods/plant, number of seeds/plant and weight of 100 seeds and numbers of days to 50% flowering. Morphometric characterisation of the descriptive data included plant height, stem diameter, number of leaves/plant, leaflet length, leaflet width and number of ramification/ plant. Groundnut seeds were treated with various doses of gamma rays (100, 200, 400 and 600 Gy). Among the various dose treatments, gamma rays treatment at 100 Gy resulted in a higher increase of grain yield and other morpho-agronomic parameters especially for the JL24 variety. In fact the gamma irradiation at 100 Gy increased significantly grain yield by 14% for JL24, and 4 % for JL12. The number of pods per plant was increased by 2% for JL12 and 37% for JL24. For the number of seeds per plant, there was a significant increase of 8% for JL12, and 62% for JL24 at 100 Gy. A similar trend was observed for the JL24 at 200 Gy dose. Higher doses of gamma rays (400 and 600 Gy) reduced significantly plant growth and grain yield. The usefulness of the mutants identified in a groundnut breeding program is discussed.展开更多
文摘Groundnuts marketed from farms are generally referred to as groundnuts in-shell. When freshly harvested, they may contain some dirt, vines and other foreign materials. Grades of these stocks are established based on intended use. Groundnut producers and commercial buyers use the grade as guidelines for trading. Grading aims at raising the quality and value of the product. Grading is generally limited to measurement of physical properties, such as, size distributions of the pods and percentage by weight of shelled kernels in the undecorticated groundnuts and percentage by weight of foreign materials. A groundnut grader was designed and developed. It was designed to sort three selected groundnut varieties commonly cultivated in Nigeria into three grades based on the geometric dimensions of the selected varieties. These varieties are SAMNUT 10, 14 and 18.Analyses of grading trials indicate that while SAMNUT 10 exhibits the three grades, the other varieties (SAMNUT 14 and 18) can only be graded into two grades. The grader has a rated capacity of grading 224 th-1 of undercorticated pods. The maximum ranges within each grade when all the varieties were considered were: grade I—15.81 mm to 18.05 mm, grade II—12.44 mm to 15.78 mm and grade III—10.60 mm to 13.30 mm.
文摘In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to synthetic fungicides, which pose potential health risks to consumers. In this study, the antifungal activity of the essential oils (EOs) of Lippia multiflora, Eucalyptus camaldulensis and Ocimum americanum was evaluated against two strains of Aspergillus flavus via the agar dilution method. These two Aspergillus flavus fungi was isolated from Bamabra groundnut seeds. Lippia multiflora essential oil (EO) showed the best results compared with the other oils, with a minimum inhibitory concentration (MIC) of 9000 μg∙mL−1. The MIC for Eucalyptus camaldulensis and Ocimum americanum EOs was 10,800 μg∙mL−1. In view of their antifungal properties, these EOs could be used to develop a new, safe antifungal agent for food preservation.
文摘A field experiment was carried out to determine the effect of variety and plant spacing on yield and growth of groundnuts. The field experiment was laid in a 3 × 3 factorial experiment in a Randomized Complete Block Design (RCBD) with three (3) replications. The factor A included three (3) groundnut varieties (Nkatie Sari, Sum Nutt 22 and Yenyawoso) and Factor B was the three (3) spacing of 30 cm × 15 cm, 30 cm × 30 cm and 30 cm × 40 cm. All recommended agronomic practices were followed. Data was collected from eight (8) tagged plants. Growth data were recorded on plant height, number of branches, number of leaves, and the number of flowers while yield data were collected on the number of flowers, number of pods per plant, 100 seeds weight and the pod yield (kg/ha). The plant spacing significantly influenced (P < 0.05) the growth and yield parameters. Groundnut grown at a spacing of 30 cm × 15 cm produced the maximum plant height, whereas the maximum number of leaves, number of branches and number of flowers were produced from 30 cm × 40 cm. Yenyawoso variety with a wider plant spacing performed better vegetatively among all the varieties. The Yenyawoso variety produced the highest number of pods, 100 seeds weight and pod yield as compared to the other varieties. Also, Yenyawoso at 30 cm × 40 cm spacing and Nkatie Sari at 30 cm × 15 cm spacing produced the maximum pod yield.
文摘Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.
基金Bhakta Kavi Narsinh Mehta University for providing support through the SCORE(Scheme for Concurrent Research Enhancement-2023),Department of Life Sciences,Junagadh.
文摘The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement.
文摘It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleaning the nuts. Grain and nuts absorb low levels of NIR, and when NIR radiation is incident on them, a substantial portion of the radiation is reflected back. Thus, studying the NIR reflectance spectra emanating from in-shell peanuts, an attempt is made for the first time to determine the MC of in-shell peanuts. In-shell peanuts of two different market types, Virginia and Valencia, were conditioned to different moisture levels between 6% and 26% (wet basis), and separated into calibration and validation groups. NIR absorption spectral data from 1000 nm to 2500 nm in 1 nm intervals were collected from both groups. Measurements were obtained on 30 replicates within each moisture level. Reference MC values for each moisture level in these groups were obtained using standard air-oven method. Partial Least Square (PLS) analysis was performed on the calibration data, and prediction models were developed. The Standard Error of Calibration (SEC), and R2 of the calibration models were computed to select the best calibration model. The selected models were used to predict the moisture content of peanuts in the validation sets. Predicted MC values of the validation samples were compared with their standard air-oven moisture values. Goodness of fit was determined based on the lowest Standard Error of Prediction (SEP) and highest R2 value obtained for the prediction models. The model, with reflectance plus normalization spectral data with an SEP of 0.74 for Valencia and 1.57 for Virginia type in-shell peanuts was selected as the best model. The corresponding R2 values were 0.98 for both peanut types. This work establishes the possibility of sensing MC of intact in-shell peanuts by NIR reflectance method, and would be useful for the peanut and allied industries.
文摘In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a whole have not received much attention. There is a dearth of knowledge on the productivity of maize-groundnut intercrops in Ghana regarding the relative timing of planting and spatial arrangement of component crops. Therefore, the objective of the study was to determine the effects of spatial row arrangement and the time of planting intercrops on the productivity of groundnut under maize-groundnut intercropping. The 5 × 3 factorial field experiment was undertaken at the Miminaso community in the Ejura-Sekyedumase municipality of the Ashanti Region of Ghana during the 2020 cropping seasons. Treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replicates. The levels of row arrangement of intercrops were: one row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize and sole groundnut (M/G). The levels of time of introducing groundnut included simultaneous planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP). There were significant (P 0.05) treatment interactions for pod and seed yields of groundnut throughout the study. The highest groundnut pod yields of 1815.00 kg/ha and 2359.00 kg/ha were recorded by the 0WAP × 1M2G treatment in the major and minor seasons of 2020, respectively, while the highest groundnut seed yields of 741.00 kg/ha and 726.00 kg/ha were recorded in the major and minor rainy seasons of 2020 by 1WAP × G and 0WAP × G treatments, respectively. The highest seed yields of groundnut (404 kg/ha and 637 kg/ha for major and minor rainy seasons, respectively) were produced by 1WAP × 2M2G.
文摘Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hull (R-GH)]. The biosorbents were further characterized using physicochemical procedures (pH dependence, bulk density, surface area, ash content, and volatile matter, moisture content). The results show that HP-GH has pH = 8.9, W-GH pH = 8.4 and R-GH pH = 8.5 which is an indication that all the biosorbents have the appropriate pH values for the uptake of cationic species within aqueous systems. Surface area analysis revealed that HP-GH has the largest surface area (74.20 m<sup>2</sup>·g<sup>-1</sup>) while W-GH and R-GH have surface area values of 29.40 m<sup>2</sup>·g<sup>-1</sup> and 21.40 m<sup>2</sup>·g<sup>-1</sup> respectively. This suggests that modification of raw groundnut hull biomass with hydrogen peroxide possibly instigated delignification of the biomass which resulted in increased surface area for HP-GH. Results from Bulk density analysis also confirm the data obtained from surface area analysis. Accordingly, R-GH displayed the highest bulk density followed by W-GH with HP-GH showing the least bulk density. The variation in pH values among the biomass used in this study may be explained by the variation in their ash content as well because pH and ash content are positively correlated. Hence, HP-GH with a pH = 8.9 has high ash content (117.31%), W-GH with pH = 8.4 has 97.93% ash content and R-GH with pH = 8.5 has 94.26% ash content. Results from moisture content analysis show that HP-GH (99.95%), W-GH (99.97%) and R-GH (99.89%) may necessitate exposure of the biosorbents to moderate heat before use. The results obtained from this study suggest that modification of ground nut hull with either distilled water or Hydrogen peroxide by means of microwave irradiation improves physicochemical properties which may perhaps increase the adsorption capacity of the biomass.
文摘Soil fertility continues to decline in Ghana due to unsustainable human activities like bush burning, quarrying, improper farming practices, among others. To resolve this challenge, crop farmers resort to continuous use of mineral fertilizers in Ghana, which contaminates the environment and makes crop farming less sustainable and productive. One of the strategies to improve soil fertility and productivity for sustainable crop yields is intercropping. Studies were, therefore, undertaken at Miminaso in the Ejura-Sekyedumase municipality of Ashanti Region of Ghana during the 2020 cropping seasons to determine the effects of spatial row arrangement and time of planting maize and groundnut intercrops on productivity of maize and land equivalent ratio (LER). One row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize (M) and sole groundnut (G) were factorially arranged with concurrent planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP) in a Randomized Complete Block Design with three replicates. There were significant treatment interaction (P < 0.05) effects for shelling percentage for maize in both seasons of the trial. In the major season of 2020, the highest shelling percentage of 79.30% was associated with 0 WAP × M, while in the minor season of 2020, the highest shelling percentage of 75.02% was recorded by 0 WAP × 2M1G. The treatment interaction effects for maize grain yield were significant only in the minor season of 2020 with the highest maize grain yield of 6341 kg/ha being produced by the sole maize treatment, followed by 1 WAP × 2M2G (6152 kg/ha). The highest LER of 3.05 was associated with 1 WAP × 2M2G in the minor season of 2020. Planting groundnuts within the first week of planting maize (1 WAP) increased maize seed yield and LER in two rows of maize and two rows of groundnut (2M2G) row arrangements.
文摘The Bambara groundnut Vigna subterranea (L.) Verdc. is a drought-resistant indigenous African grain legume with significant nutritional and agronomic potential. This study aimed to characterize the seed storage proteins of eight Bambara groundnut landraces. Seeds of Bambara groundnut landraces were collected from local markets in Burkina Faso, and total soluble protein as well as protein fractions were extracted. Crude protein content was determined by the Kjeldahl method, and soluble proteins were quantified using Bradford dye binding assay. The average crude protein content of the seeds was found to be 18.46%, with variations ranging from 17.69% to 19.17% among the different landraces. Most of the protein content was soluble, constituting approximately 87.04% of the total crude protein. Albumin fraction was the most dominant, representing about 95.42% of the total soluble proteins. The globulin, prolamin and glutelin fractions accounted for 1.82%, 0.13% and 1.17% of the soluble proteins, respectively. The findings provide valuable insights into the protein composition of Bambara groundnut landraces and contribute to our understanding of its nutritional potential, laying the groundwork for further research on crop improvement and sustainable agriculture practices.
文摘Different genotypes of Bambara groundnut (Vigna subterranea L. Verdc) grow well under conducive environmental conditions, provided that adequate soil moisture is available during vegetative and reproductive phases. However, drought stress is the major limiting factor to bambara production, which accounts for up to 40% of yield losses. This situation could worsen due to drastic and rapid changes in the global climate. Landraces grown by farmers are low-yielding. Understanding the physiological response of different genotypes to drought stress is key to achieving food security through crop improvement and diversification. This study focused on variations in the response of Bambara groundnut genotypes to intermittent drought stress during the crop’s critical growth (vegetative and reproductive) stages. The experiment was undertaken at CSIR-Crops Research Institute Screen-house. The treatments were used in a factorial experiment with three replications in a randomized complete block design. The Bambara genotypes showed considerable variability in tolerance to drought stress. Drought stress during vegetative and reproductive stages significantly reduced crop growth indices, the leaf relative water content, chlorophyll content and leaf area. Drought stress during vegetative and reproductive stages had a more severe impact on the seed yield of genotype Nav Red, reducing it by 69% and 13%, respectively. Farmers should pay more attention to adopting drought-tolerant and high-yielding varieties for improved Bambara groundnut productivity and livelihoods.
文摘Prediction of the nutrient deficiency range and control of it through application of an appropriate amount of fertiliser at all growth stages is critical to achieving a qualitative and quantitative yield.Distributing fertiliser in optimum amounts will protect the environment’s condition and human health risks.Early identification also prevents the disease’s occurrence in groundnut crops.A convo-lutional neural network is a computer vision algorithm that can be replaced in the place of human experts and laboratory methods to predict groundnut crop nitro-gen nutrient deficiency through image features.Since chlorophyll and nitrogen are proportionate to one another,the Smart Nutrient Deficiency Prediction System(SNDP)is proposed to detect and categorise the chlorophyll concentration range via which nitrogen concentration can be known.The model’sfirst part is to per-form preprocessing using Groundnut Leaf Image Preprocessing(GLIP).Then,in the second part,feature extraction using a convolution process with Non-negative ReLU(CNNR)is done,and then,in the third part,the extracted features areflat-tened and given to the dense layer(DL)layer.Next,the Maximum Margin clas-sifier(MMC)is deployed and takes the input from DL for the classification process tofind CCR.The dataset used in this work has no visible symptoms of a deficiency with three categories:low level(LL),beginning stage of low level(BSLL),and appropriate level(AL).This model could help to predict nitrogen deficiency before perceivable symptoms.The performance of the implemented model is analysed and compared with ImageNet pre-trained models.The result shows that the CNNR-MMC model obtained the highest training and validation accuracy of 99%and 95%,respectively,compared to existing pre-trained models.
文摘Agroecosystems in the Senegalese groundnut basin experience long periods of high temperatures and drought, which disrupt the stability of soil microbial communities. This study evaluated how that stability is affected by homefields and outfields’ agricultural practices and the duration of heat stress. Specifically, we collected soils from organically farmed fields that receive continual high inputs of manure (homefields), and from fields that are rarely manured (outfields). Soil samples were submitted to artificial heat stress at 60°C for 3, 14, and 28 days, followed by 28 days of recovery at 28°C. We examined the functional stability of microbial communities by quantifying C mineralization, and characterized the stability of the communities’ taxonomic compositions via high-throughput DNA sequencing. We found that the microbial communities have a low resistance to heat stress in soils from both types of fields. However, the manuring practice does affect how the functional stability of microbial communities responds to different durations of heat stress. Although functional stability was not recovered fully in either soil, microbial community resilience seemed to be greater in homefield soils. Differences in manuring practices also affected the structural taxonomic stability of microbial communities: relative abundances of Bacilli, Chloroflexia, Actinobacteria and Sordariomycetes increased in the homefield stressed-soils, but decreased significantly in outfield soils. In contrast, relative abundances of α-Proteobacteria, γ-Proteobacteria and Eurotiomycetes increased significantly in outfield stressed-soils, while decreasing significantly in the homefield soils. Relative abundances of Bacilli changed little in outfield soils, indicating that this taxon is resistant to heat stress. In summary, the microbial communities’ capacities to resist heat stress and recover from it depend upon the organic richness of the soil (i.e., manuring practice) and the adaptation of soil microbes to environmental conditions.
文摘Cassava-groundnut intercropping is not a common practice among smallholder farmers in Sierra Leone even though both crops are well suited for intercropping. On-farm trials were conducted in three locations (Bai Largor, Bassah, and Njala Kanima) in the Moyamba district during the 2021 cropping season to investigate the efficacy of cassava-groundnut intercropping for increasing crop productivity and soil organic carbon stock on smallholder farms in the Moyamba district, Southern Sierra Leone. The experimental design was a randomized complete block design in three replications with treatments of sole groundnut, sole cassava and cassava-groundnut intercropping. Data on the yield and yield components of cassava and groundnut were analysed using the PROC MIXED procedure of SAS 9.4 and means were compared using the standard error of difference (SED). The above-ground biomass, number of roots per plant, and fresh root yield of cassava were not significantly (p > 0.05) affected by the cassava-based cropping system. Averaged across locations, intercropping cassava with groundnut decreased the above-ground biomass, the number of roots per plant, and fresh root yield of cassava by 17%, 11%, and 17%, respectively. The above-ground biomass, number of pods per plant and fresh pod yield of groundnut were significantly (p 1), the highest net revenue and benefit-cost ratio. The benefit-cost ratio was also favourable for the sole cassava (BCR > 1) but not favourable for the sole groundnut (BCR < 1). Averaged across locations, intercropping cassava with groundnut increased the benefit-cost ratio by 121% and 13% when compared to the sole groundnut and sole cassava. In the event of a 40% yield loss for the cassava and groundnut, the benefit-cost ratio was favourable (1.12) only for the cassava groundnut intercropping system. The net soil organic carbon stock was favourable only for the cassava-groundnut intercrop. Averaged across locations, the net soil organic carbon for the cassava-groundnut intercropping increased by 3.4% when compared to the baseline within one cropping cycle of the cassava (12 months). The results confirm that cassava-groundnut intercropping is a sustainable land management practice that could enhance crop productivity and soil organic carbon stock on smallholder farms.
基金supported by the GENES intra-Africa Academic Mobility scheme of the European Union(EU-GENES:EACEA/2917/2552)the DESIRA-ABEE project funded by European Union。
文摘Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess germplasm variability from whole seed of 699 samples,field-collected and assembled in four genetic and environmentbased sets:one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population,evaluated in three environments in a large spatial scale of two countries,Mbalmayo and Bafia in Cameroon and Nioro in Senegal,under rainfed conditions.NIR elemental spectra were gathered on six subsets of seeds of each sample,after three rotation scans,with a spectral resolution of 16 cm-1over the spectral range of867 nm to 2530 nm.Spectra were then processed by principal component analysis(PCA)coupled with Partial least squares-discriminant analysis(PLS-DA).As results,a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments.The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 nm,usually related to oil content and fatty acid composition.PCA yielded the most chemical attributes in three significant PCs(i.e.,eigenvalues>10),which together captured 93%of the total variation,revealing genetic and environment structure of varieties and genotypes into four clusters,corresponding to the four samples sets.The pattern of genetic variability of the interspecific population covers,remarkably half of spectrum of the core-collection,turning out to be the largest.Interestingly,a PLS-DA model was developed and a strong accuracy of 99.6%was achieved for the four sets,aiming to classify each seed sample according to environment origin.The confusion matrix achieved for the two sets of Bafia and Nioro showed 100%of instances classified correctly with 100%at both sensitivity and specificity,confirming that their seed quality was different from each other and all other samples.Overall,NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection,as a source of nutritional diversity,to support the breeding efforts.
文摘During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.
基金research projects sponsored by the Department of Biotechnology(DBT),Government of India,to UAS-Dharwad and ICRISAthe CGIAR Research Program on Grain Legumes
文摘Groundnut(Arachis hypogaea L.)is widely grown and consumed around the world and is considered to have originated from a single hybridization event between two wild diploids.The utilization of wild germplasm in breeding programs has been restricted by reproductive barriers between wild and cultivated species and technical difficulties in making large numbers of crosses.Efforts to overcome these hurdles have resulted in the development of synthetic amphidiploids,namely ISATGR 278-18(Arachis duranesis×Arachis batizocoi)and ISATGR 5B(Arachis magna×A.batizocoi),which possess several desirable traits,including resistance to foliar diseases that generally cause huge yield losses annually in groundnut growing areas of Asia,America,and Africa.With an objective to improve foliar disease resistance,the primary gene pool was diversified by introgressing foliar disease resistance in five cultivated genotypes(ICGV 91114,ICGS 76,ICGV 91278,JL 24,and DH 86)from synthetic amphidiploids using a backcross breeding approach.Several introgression lines with resistance to two foliar diseases(rust and late leaf spot)were identified with levels of resistance equal to the donors.These backcross derived lines have shown a wide range of variation for several morphological and agronomic traits.These lines,after further evaluation and selection,can serve as donors in future breeding programs aimed atdeveloping improved cultivars with desirable agronomic traits,high resilience to biotic/abiotic stresses and a broadened genetic base.
文摘Objective:To assess the awareness and knowledge of aflatoxin contamination in groundnut and the risk of its ingestion among health workers in Ibadan.Methods:The study was a descriptive cross-sectional study.Study instrument was a semi-structured self administered questionnaire. The respondents were health workers from a public health facility.Results:A total of 417 health workers participated out of which males were 60.2%.The mean age of respondents was(28.0±4.9) years old.Doctors made up 83.0%while others were nurses.95%of the respondents had previous awareness of aflatoxin and class room lectures was the most common source of information(56%).Occupation and religion both showed a significant association with previous awareness of aflatoxin(P<0.05).Knowledge regarding aflatoxin contamination in groundnut and the risk of its ingestion was obtained showing knowledge score range of 0 to 14.In all,80.6%had good scores of 11 to 14.None of the respondents had ever told their patients about the risk of aflatoxin ingestion. Conclusions:There is a need to explore the possibility of incorporating aflatoxin awareness into routine health talk to increase the level of awareness of patients and their relatives.
文摘Induced mutation in plant improvement has been used in several crops to generate new sources of genetic variations. A study was conducted to determine the effect of different doses of gamma irradiation on different morpho-agronomic characteristics. Agronomic traits that were analyzed included: grain yield, number of pods/plant, number of seeds/plant and weight of 100 seeds and numbers of days to 50% flowering. Morphometric characterisation of the descriptive data included plant height, stem diameter, number of leaves/plant, leaflet length, leaflet width and number of ramification/ plant. Groundnut seeds were treated with various doses of gamma rays (100, 200, 400 and 600 Gy). Among the various dose treatments, gamma rays treatment at 100 Gy resulted in a higher increase of grain yield and other morpho-agronomic parameters especially for the JL24 variety. In fact the gamma irradiation at 100 Gy increased significantly grain yield by 14% for JL24, and 4 % for JL12. The number of pods per plant was increased by 2% for JL12 and 37% for JL24. For the number of seeds per plant, there was a significant increase of 8% for JL12, and 62% for JL24 at 100 Gy. A similar trend was observed for the JL24 at 200 Gy dose. Higher doses of gamma rays (400 and 600 Gy) reduced significantly plant growth and grain yield. The usefulness of the mutants identified in a groundnut breeding program is discussed.